Читать «Большая Советская Энциклопедия (ОП)» онлайн - страница 28

БСЭ БСЭ

  7) Левую часть линейного дифференциального уравнения

можно рассматривать как результат применения некоторого оператора, ставящего в соответствие функции x (t ) функцию j(t ). Такой оператор носит название линейного дифференциального оператора. Простейшим частным случаем линейного дифференциального оператора является оператор дифференцирования.

  Примеры нелинейных операторов:

  8) Пусть A [f (t )] = f 2 (t ); определённый т. о. оператор является нелинейным.

  9) Пусть

  Действия над операторами . Пусть дан оператор

у = А (х ),

  причём никакие два разных элемента х и х' не переходят в один и тот же элемент у . Тогда каждому образу у отвечает его единств. прообраз х . Это соответствие называется обратным оператором и обозначают

х = А –1 (у ).

  Построение обратного оператора эквивалентно решению уравнения у = А (х ) относительно х (отыскание неизвестного прообраза по данному образу).

  Если A 1 и А 2 — два оператора, отображающих R в R' , то их суммой А = A 1 + A 2 называется оператор, определяемый равенством А (х ) = A 1 (x ) + A 2 (x ). Если оператор A 1 переводит R в R' , а A 2 переводит R' в R” , то результат их последовательного применения представляет собой оператор, отображающий R в R” ; его называют произведением A 2 A 1 операторов A 1 и A 2 . Если, в частности, рассматриваются операторы, переводящие некоторое линейное пространство в себя, то сумма и произведение двух таких операторов всегда определены. Результат последовательного применения п раз одного и того же оператора А есть n -я степень An этого оператора. Например, n -я степень оператора дифференцирования есть оператор n -kpaтного дифференцирования Dn [f (t)] = f (n) (t). Произведение lА оператора А на число l определяется формулой

(lА )(х ) = lА (х ).

Оператор Е , переводящий всякий элемент х в самого себя, называется единичным. Нулевым называется оператор О , переводящий каждый элемент в нуль. Очевидно, что при любом А справедливы равенства: AE = EA = А и А+О = О + А = А , далее, если, А –1 существует, то А –1 А = AA –1 = Е (следует заметить, что для двух произвольных операторов А и В произведения AB и BA , вообще говоря, не равны между собой).

  С помощью операций сложения, умножения операторов и умножения операторов на числа можно определить многочлены от линейного оператора, а путём предельного перехода, понимаемого соответствующим образом, — и более сложные функции от оператора. Например, если D — оператор дифференцирования, то eD означает оператор, определяемый формулой

,

  имеющий смысл для тех f (t ), для которых ряд справа сходится. Для аналитических функций сумма этого ряда равна f (t + 1), т. е. eD — оператор сдвига, переводящий f (t ) в f (t + 1).

  Линейные операторы в гильбертовом пространстве . Наиболее полно О. т. разработана для случая линейных операторов в . Пусть А — ограниченный линейный оператор в гильбертовом пространстве H . Комплексное число l называется собственным значением оператора А , если существует такой элемент х ¹ 0 из H , что А (х ) = lх ; при этом х называется собственным вектором оператора А , отвечающим данному собственному значению. Число l называется регулярной точкой оператора А , если оператор (А + lЕ )–1 существует, определён на всём Н и ограничен; остальные значения l называется точками спектра оператора А . Каждое собственное значение принадлежит спектру, их совокупность образует точечный спектр, остальную часть спектра называется непрерывным спектром. Тот факт, что спектр линейного оператора, вообще говоря, не исчерпывается его собственными значениями, представляет собой характерную черту линейных операторов в бесконечномерном пространстве, отличающую их от линейных преобразований конечномерного евклидова пространства.