Читать «Большая Советская Энциклопедия (ОП)» онлайн - страница 118
БСЭ БСЭ
Сформулируем для поставленной задачи необходимое условие оптимальности управления.
Принцип максимума Понтрягина. Пусть вектор-функция
u = u (t ) = (u 1 (t ),..., u r (t )), t £ t 0 £ t 1 , (5)
– оптимальное управление, а вектор-функция
x = x (t ) = (x 1 (t ),..., x n (t )), t £ t 0 £ t 1 ,
– соответствующее ему решение задачи (3). Рассмотрим вспомогательную линейную систему обыкновенных дифференциальных уравнений
, (6)
k = 0, 1,..., n ,
и составим функцию
Н (y, х , u ) = ,
зависящую, помимо х и u , от вектора y = (y0 , y1 ,..., yn ). Тогда у линейной системы (6) существует такое нетривиальное решение
y = y(t ) = (y0 (t ), y1 (t ),..., yn (t )),
t £ t 0 £ t 1 ,
что для всех точек t из отрезка [t 0 , t 1 ], в которых функция (5) непрерывна, выполнено соотношение
мах Н (y(t ), х (t ), u ) = Н (y(t ), x (t ), u (t )) = 0,
u Î U
причём y0 (t) º const £ 0.
К виду (1) обычно приводятся уравнения движения в случае управляемых механических объектов с конечным числом степеней свободы. В многочисленных реальных ситуациях возникают и иные постановки задач О. у., отличающиеся от приведённой выше: задачи с фиксированным временем, когда продолжительность процесса заранее задана, задачи со скользящими концами, когда про начальное и конечное состояния известно, что они принадлежат некоторым множествам, задачи с фазовыми ограничениями, когда решение задачи (3) в каждый момент времени должно принадлежать фиксированному замкнутому множеству, и др. В задачах механики сплошных сред характеризующая состояние управляемого объекта величина х является функцией уже не только времени, но и пространственных координат (например, величина х может описывать распределение температуры в теле в данный момент времени), а закон движения будет дифференциальным уравнением с частными производными. Часто приходится рассматривать управляемые объекты, когда независимая переменная принимает дискретные значения, а закон движения представляет собой систему конечно-разностных уравнений. Наконец, отдельную теорию составляет О. у. стохастическими объектами.
Лит.: Математическая теория оптимальных процессов, 2 изд.. М., 1969 (авт. Л. С. Понтрягин, В. Г. Болтянский, Р. В. Гамкрелидзе, Е. Ф. Мищенко); Красовский Н. Н., Теория управления движением, М., 1968; Моисеев Н. Н., Численные методы в теории оптимальных систем, М., 1971.
Н. Х. Розов.
Оптимальные цены
Оптима'льные це'ны при социализме, цены, получаемые в процессе расчёта оптимальною плана производства и потребления продукции на одном и том же массиве экономической информации методами я (см. ). Применение О. ц. в масштабах народного хозяйства возможно только в условиях социалистической системы хозяйства. Действие позволяет представить народнохозяйственное планирование в экстремальной динамической задаче математического программирования.