Читать «Большая Советская Энциклопедия (ОБ)» онлайн - страница 79
БСЭ БСЭ
Лит.: Пойа Д., Математика и правдоподобные рассуждения, пер. с англ., М., 1957; Давыдов В. В., Виды обобщения в обучении, М., 1972; Сачков Ю. В., Процессы обобщения в синтезе знаний, в кн.: Синтез современного научного знания, М., 1973, с. 421—46; Матюшкин А. М., Новосёлов М. М., Виды обобщения и проблемы психологии обучения, «Вопросы психологии», 1974, № 2.
Ф. В. Лазарев, М. М. Новосёлов.
Обобщённые импульсы
Обобщённые и'мпульсы, физические величины pi, определяемые формулами: pi = или pi = , где Т — кинетическая энергия, a L — Лагранжа функция данной механической системы, зависящие от обобщённых координат qi, обобщённых скоростей , и времени t. Размерность О. и. зависит от размерности обобщённой координаты. Если размерность qi — длина, то pi имеет размерность обычного импульса, т. е. произведения массы на скорость; если же координатой qi является угол (величина безразмерная), то pi имеет размерность момента количества движения и т.д.
Обобщённые координаты
Обобщённые координа'ты, независимые между собой параметры qi (r = 1, 2,..., s) любой размерности, число которых равно числу s степеней свободы механич. системы и которые однозначно определяют положение системы. Закон движения системы в О. к. даётся s уравнениями вида qi = qi (t), где t — время. О. к. пользуются при решении многих задач, особенно когда система подчинена связям, налагающим ограничения на её движение. При этом значительно уменьшается число уравнений, описывающих движение системы, по сравнению, например, с уравнениями в декартовых координатах (см. в механике). В системах с бесконечно большим числом степеней свободы (сплошные среды, физические поля) О. к. являются особые функции пространственных координат и времени, называются потенциалами, и т.п.
Обобщённые силы
Обобщённые си'лы, величины, играющие роль обычных сил, когда при изучении равновесия или движения механической системы её положение определяется . Число О. с. равно числу s степеней свободы системы; при этом каждой обобщённой координате qi соответствует своя О. с. Qi. Значение О. с. Qi, соответствующей координате qi, можно найти, вычислив элементарную работу dA1 всех сил на возможном перемещении системы, при котором изменяется только координата qi, получая приращение dq1. Тогда dA1 = Q1dq1, т.е. коэффициент при dqi в выражении dA1 и будет О. с. Q1. Аналогично вычисляются Q2, Q3,..., Qs. Например, если для лебёдки (рис.) вместе с поднимаемым ею на тросе грузом весом Р (система с одной степенью свободы) принять за обобщённую координату qi угол j поворота вала лебёдки и если к валу приложены вращающий момент Мвр и момент сил трения Мтр, то в данном случае dA1 = (Мвр—Мтр—Pr)dj, где r — радиус вала (весом троса пренебрегаем). Следовательно, для этой системы О. с., соответствующей координате j, будет Q1 =Мвр—Мтр—Pr.