Читать «Большая Советская Энциклопедия (МН)» онлайн - страница 9

БСЭ БСЭ

  Теорема (существования) Минковского (1896): существует выпуклый М. с любыми площадями граней и любыми направлениями внешних нормалей к ним, лишь бы сумма векторов, имеющих направления нормалей и длины, равные площадям соответствующих граней, была равна нулю и эти векторы не лежали бы все в одной плоскости. Эти условия необходимы.

  Теорема (единственности) Минковского (1896): выпуклый М. вполне определяется площадями своих граней и направлениями внешних нормалей к ним; и углубляющая её теорема (единственности) А. Д. Александрова: два выпуклых М. с попарно параллельными гранями не равны друг другу только в том случае, если для одной из пар параллельных граней с одинаково направленными внешними нормалями одна из этих граней может быть при помощи параллельного переноса вложена в другую.

  Теорема Штейница (1917): существует выпуклый М. с любой наперёд заданной сеткой. При этом сеткой выпуклого М. называют сетку, составленную его ребрами. Два М. принадлежат к одному и тому же типу, если топологически тождественны сетки их рёбер, т. е. если один из них отличается от другого лишь длиной своих рёбер и величиной углов между ними. Сетку рёбер выпуклого М. можно спроектировать на плоскость из внешней точки, весьма близкой к внутренней точке какой-либо его грани. Сама эта грань спроектируется тогда в виде внешнего выпуклого многоугольника, а все остальные — в виде малых выпуклых многоугольников, которые его заполняют, не налегая друг на друга, и смежны друг с другом целыми сторонами. Тип сетки рёбер М. при таком проектировании не меняется. Число m типов М. с данным числом n граней ограничено, а именно: если n = 4, 5, 6, 7, 8, ..., то m = 1, 2, 7, 34, 257,... На рис. даны сетки всех типов для n = 4, 5, 6.

  Наиболее важны следующие специальные выпуклые М.

  Правильные многогранники (тела Платона) — такие выпуклые М., все грани которых суть конгруэнтные правильные многоугольники. Все многогранные углы правильного М. правильные и равные. Как это следует уже из подсчёта суммы плоских углов при вершине, выпуклых правильных М. не больше пяти. Указанным ниже путём можно доказать, что существуют именно пять правильных М. (это доказал Евклид). Они — правильные , , , и .

  Куб и октаэдр дуальны, т. е. получаются друг из друга, если центры тяжести граней одного принять за вершины другого или обратно. Аналогично дуальны додекаэдр и икосаэдр. Тетраэдр дуален сам себе. Правильный додекаэдр получается из куба построением «крыш» на его гранях (способ Евклида), вершинами тетраэдра являются любые четыре вершины куба, попарно не смежные по ребру. Так получаются из куба все остальные правильные М.