Читать «Большая Советская Энциклопедия (МН)» онлайн - страница 17

БСЭ БСЭ

  Характерный для теории управляющих систем вопрос о сложности этих систем естественно возникает и по отношению к формулам и функциям из М. л. Типичной при таком подходе является следующая задача о сложности реализации. На множестве всех элементарных формул некоторым способом вводится числовая мера (сложность формул), которая затем распространяется на множество всех формул, например, путём суммирования мер всех тех элементарных формул, которые участвуют в построении заданной формулы. Требуется для заданной функции указать ту формулу (простейшую), которая реализует эту функцию и имеет наименьшую сложность, а также выяснить, как эта сложность зависит от некоторых свойств рассматриваемой функции. Исследуются различные обобщения этой задачи. Широкий круг вопросов связан с реализацией функций формулами с наперёд заданными свойствами. Сюда относятся задача о реализации функций алгебры логики дизъюнктивными нормальными формами и связанная с этим задача о минимизации; а также задача о реализации функций формулами в некотором смысле ограниченной глубины (т. е. такими формулами, в которых цепочка подставляемых друг в друга формул имеет ограниченную длину, такое ограничение связано с надёжностью и скоростью вычислений).

  Решения всех перечисленных задач существенно зависят от мощности множества Е и множества М , порождающего заданную модель М. л.

  К числу наиболее важных примеров М. л. относятся конечнозначные логики (т. е. m -значные логики, для которых m конечно). Среди них наиболее глубоко исследован случай m = 1. Важнейшим результатом здесь является полное описание структуры замкнутых классов и получение для них важной информации по задаче о сложности реализации. Установлено, что при m > 2 у конечнозначных логик возникает ряд особенностей, существенно отличающих их от двузначного случая. Таковы, например, континуальность множества замкнутых классов (при m = 2 их счётное число), особенности решения задачи о сложности реализации и ряд других. Общим результатом для конечнозначных логик является эффективное решение задачи о полноте для замкнутых классов, содержащих все функции со значениями в Е . Решение остальных проблем для конечнозначных логик продвинуто в различной степени. Особая значимость конечнозначных логик связана ещё и с тем, что они позволяют описывать работу самых различных реальных вычислительных устройств и автоматов.

  Примерами другой М. л. являются счётнозначные и континуум-значные логики (т. е. такие m -значные логики, для которых мощность m является, соответственно, счётной или континуальной). Эти модели играют важную роль в математической логике, и в математическом анализе. К М. л. иногда относят и такие алгебры функций, в которых запас операций несколько отличается от указанного. Как правило, это достигается путём сужения описанного запаса или введения в операции некоторых функций рассматриваемой М. л.