Читать «Большая Советская Энциклопедия (ЛА)» онлайн - страница 50
БСЭ БСЭ
Для Л. у. в общем случае имеют вид:
(i = 1,2, ..., n),
где qi — обобщённые координаты, число которых равно числу n степеней свободы системы, — обобщённые скорости, Qi — обобщённые силы, Т — кинетическая энергия системы, выраженная через qi и .
Для составления уравнений (1) надо найти выражение Т и вычислить по заданным силам Qi. После подстановки Т в левые части уравнения (1) будут содержать координаты qi и их первые и вторые производные по времени, т. е. будут дифференциальными уравнениями 2-го порядка относительно qi. Интегрируя эти уравнения и определяя постоянные интегрирования по начальным условиям, находят зависимости qi(t), т. е. закон движения системы в обобщённых координатах.
Когда на систему действуют только потенциальные силы, Л. у. принимают вид:
(i = 1,2, ..., n),
где L = Т — П — т. н. функция Лагранжа, а П — потенциальная энергия системы. Эти уравнения используются и в др. областях физики.
Уравнения (1) и (2) называют ещё Л. у. 2-го рода. Кроме них, есть Л. у. 1-го рода, имеющие вид обычных уравнений в декартовых координатах, но содержащие вместо реакций связей пропорциональные им неопределённые множители. Особыми преимуществами эти уравнения не обладают и используются редко, главным образом для отыскания реакций связей, когда закон движения системы найден другим путём, например с помощью уравнений (1) или (2).
Лит. см. при ст. . О Л. у. в гидромеханике см. Кочин Н. Е., Кибель И. А., Розе Н. В., Теоретическая гидромеханика, 6 изд., ч. 1, М., 1963.
С. М. Тарг.
Лагранжа формула
Лагра'нжа фо'рмула, одна из основных формул дифференциального исчисления; то же, что . Найдена Ж. (1797).
Лагранжа функция
Лагра'нжа фу'нкция, кинетический потенциал, характеристическая функция L(qi, , t) механической системы, выраженная через qi, обобщённые скорости и время t. В простейшем случае консервативной системы Л. ф. равна разности между кинетической Т и потенциальной П энергиями системы, выраженными через qi и , т. е. L = T(qi, , t) — П(qi). Зная Л. ф., можно с помощью составить дифференциальные уравнения движения механической системы.
Лагтинг
Ла'гтинг (lagting), 1) в Норвегии верхняя палата парламента (); избирается стортингом в составе одной четверти его членов, остальные три четверти депутатов образуют нижнюю палату — . 2) На Фарерских островах — выборный орган местного управления.
Ла-Гуайра
Ла-Гуа'йра (La Guaira), город на С. Венесуэлы. 24,5 тыс. жителей (1969). Крупный морской порт на Карибском море (3/5 импорта страны; грузооборот свыше 1 млн. т в год). Железными и автодорогами соединён с Каракасом. Центр рыболовства. Обработка импортного сырья. Основан в 16 в.