Читать «Большая Советская Энциклопедия (ИЗ)» онлайн - страница 84
БСЭ БСЭ
(1)
при этом Q и U считаются положительными скалярными величинами одного и того же рода (см. ), а множитель q — положительное действительное число, которое может быть как рациональным, так и иррациональным. Для рационального q = m/n (m и n — натуральные числа) равенство (1) имеет весьма простой смысл: оно означает, что существует такая величина V (n -я доля от U ), которая, будучи взята слагаемым n раз, даёт U, будучи же взята слагаемым m раз, даёт Q :
.
В этом случае величины Q и U называются соизмеримыми. Для несоизмеримых величин U и Q множитель q иррационален (например, равен числу p, если Q есть длина окружности, а U — её диаметр). В этом случае самое определение смысла равенства (1) несколько сложнее. Можно определить его так: равенство (1) обозначает, что для любого рационального числа r
(2)
Достаточно потребовать, чтобы условие (2) выполнялось для всех десятичных приближений к q по недостатку и по избытку. Следует отметить, что исторически само понятие иррационального числа возникло из задачи И., так что первоначальная задача в случае несоизмеримых величин заключалась собственно не в том, чтобы определить смысл равенства (1), исходя из готовой теории действительных чисел, а в том, чтобы установить смысл символа q , отображающего результат сравнения величины Q с единицей меры U. Например, по определению немецкого математика Р. Дедекинда, иррациональное число есть «сечение» в системе рациональных чисел. Такое сечение и появляется естественно при сравнении двух несоизмеримых величин Q и U. По отношению к этим величинам все рациональные числа разделяются на два класса: класс R 1 рациональных чисел r , для которых Q > rU , и класс R 2 рациональных чисел r, для которых Q < rU.
Большое значение имеет приближённое И. величин при помощи рациональных чисел. Ошибка приближённого равенства Q » rU равна D = (r — qU ). Естественно искать такие r = m /n, для которых ошибка меньше, чем при любом числе r' = m’ /n’ с знаменателем n' £ n. Такого рода приближения доставляются подходящими дробями r 1 , r 2 , r 3 ,... к числу q , которые находятся при помощи теории . Например, для длины окружности S , измеряемой диаметром U, приближения таковы:
и т. д.; для длины года Q , измеряемой сутками U , приближения таковы:
А. Н. Колмогоров.
И. в социальном исследовании (в статистике, социологии, психологии, экономике, этнографии), способ упорядочения социальной информации, при котором системы чисел и отношений между ними ставятся в соответствие ряду измеряемых социальных фактов. Различные меры повторяемости, воспроизводимости социальных фактов и являются социальными измерениями, или шкалами. С развитием общества получают распространение простые шкалы — денежная оценка труда, разряды квалификации, оценка успехов в обучении (система баллов), спорте и др. И. в общественных науках отличается от таких «естественных» шкал точным определением измеряемых признаков и правил построения шкалы.