Читать «Большая Советская Энциклопедия (ИЗ)» онлайн - страница 136
БСЭ БСЭ
Изоморфизм (матем.)
Изоморфи'зм, одно из основных понятий современной математики, возникшее сначала в пределах алгебры в применении к таким алгебраическим образованиям, как , , и т. п., но оказавшееся весьма существенным для общего понимания строения и области возможных применений каждого раздела математики.
Понятие И. относится к системам объектов с заданными в них операциями или отношениями. В качестве простого примера двух изоморфных систем можно рассмотреть систему R всех действительных чисел с заданной на ней операцией сложения x = x 1 + x 1 и систему Р положительных действительных чисел с заданной на ней операцией умножения y = y 1 y 2 . Можно показать, что внутреннее «устройство» этих двух систем чисел совершенно одинаково. Для этого достаточно систему R отобразить в систему Р , поставив в соответствие числу х из R число у = ax (а > 1) из Р. Тогда сумме x = x 1 + x 2 будет соответствовать произведение y = y 1 y 2 чисел соответствующих x 1 и x 2 . Обратное отображение Р на R имеет при этом вид x = loga y. Из любого предложения, относящегося к сложению чисел системы R , можно извлечь соответствующее ему предложение, относящееся к умножению чисел системы Р . Например, если в R сумма
членов арифметической прогрессии выражается формулой
то в Р произведение
членов геометрической прогрессии выражается формулой
(умножению на n в системе R соответствует при переходе к системе Р возведение в n -ю степень, а делению на два — извлечение квадратного корня).
Изучение свойств одной из изоморфных систем в значительной мере (а с абстрактно-математической точки зрения — полностью) сводится к изучению свойств другой. Любую систему объектов S', изоморфную системе S , можно рассматривать как «модель» системы S («моделировать систему S при помощи системы S' ») и сводить изучение самых разнообразных свойств системы S к изучению свойств «модели» S'.
Общее определение И. систем объектов с заданными на них в конечном числе отношениями между постоянным для каждого отношения числом объектов таково. Пусть даны две системы объектов S и S', причём в первой определены отношения
а во второй — отношения
Системы S и S' с указанными в них отношениями называются изоморфными, если их можно поставить в такое взаимно однозначное соответствие
(где х — произвольный элемент S , а x' — произвольный элемент S' ), что из наличия Fk (x 1 ,x 2 ,... ) вытекает F'k (х' 1 ,х' 2 ,... ), и наоборот. Само указанное соответствие называется при этом изоморфным отображением, или изоморфизмом. [В приведённом выше примере в системе R определено отношение F (x, x 1 , x 2 ), где x = x 1 + x 2 , в системе Р — отношение F' (y , y 1 , y 2 ), где у = у 1 у 2 ; взаимно однозначное соответствие устанавливается по формулам у = ax , х = 1oga y. ]
Понятие И. возникло в теории групп, где впервые был понят тот факт, что изучение внутренней структуры двух изоморфных систем объектов представляет собой одну и ту же задачу.