Читать «Большая Советская Энциклопедия (БЕ)» онлайн - страница 525

БСЭ БСЭ

 

  С. Б. Стечкин.

Бесконечно малая

Бесконе'чно ма'лая в математике, переменная величина, стремящаяся к , равному нулю. Для того чтобы понятие Б. м. имело точный смысл, необходимо указывать тот процесс изменения, при котором данная величина становится Б. м. Например, величина y = 1/x является Б. м. при аргументе х, стремящемся к бесконечности, а при х, стремящемся к нулю, она оказывается . Если предел переменной у конечен и равен а , то lim (y - a ) = 0 и обратно. Поэтому понятие Б. м. величины можно положить в основу общего определения предела переменной величины. Теория Б. м. является одним из способов построения теории пределов.

  При рассмотрении нескольких переменных величин, участвующих в одном и том же процессе изменения, переменные у и z называются эквивалентными, если limz/y = 1; если при этом у является Б. м., то у и z называются эквивалентными Б. м. Переменная z называется Б. м. относительно у, если z/y есть Б. м. Последний факт часто записывается в виде z = о (у ) (читается: «z есть о малое от у»). Если при этом у является Б. м., то говорят, что z есть Б. м. более высокого порядка, чем у. Часто среди нескольких Б. м., участвующих в одном и том же процессе изменения, одна из них, скажем у, принимается за главную, и с ней сравниваются все остальные. Тогда говорят, что z есть Б. м. порядка k > 0, если предел lim z/ук существует и отличен от нуля; если же этот предел равен нулю, то z называется Б. м. порядка выше k. Изучение порядков различного рода Б. м. — одна из важных задач математического анализа.

  Для случая, когда переменная величина есть функция аргумента х, из общего определения предела вытекает такое развёрнутое определение Б. м.: функция f (x ), определённая в окрестности точки x0 , называется Б. м. при х, стремящемся к x0 , если для любого положительного числа e найдётся такое положительное число d, что для всех x &sup1; x0 , удовлетворяющих условию |x - x0 | < d, выполняется неравенство |f (x)| < e. Этот факт записывается в виде

 

При изучении функции f (x ) вблизи точки xo за главную Б. м. принимают приращение независимого переменного Dх = х - х0 . Формула

  Dy = f’ (x0 ) Dx + о (Dх)

выражает, например, что приращение Dy дифференцируемой функции с точностью до Б. м. порядка выше первого совпадает с её дифференциалом dy = f ' (x0 ) Dx.

  Метод Б. м., или (что то же) метод пределов, является в настоящее время основным методом обоснования математического анализа, почему его и называют также анализом Б. м. Он заменил древних и . Метод Б. м. был намечен И. Ньютоном (1666) и получил всеобщее признание после работ О. . При помощи Б. м. даются определения таких основных понятий анализа, как сходящийся ряд, интеграл, производная, дифференциал. Кроме того, метод Б. м. служит одним из основных методов приложения математики к задачам естествознания. Это связано с тем, что большинство закономерностей механики и классической физики выражается в виде формул, связывающих Б. м. приращения изучаемых величин, и обращение к Б. м. является обычным приёмом составления дифференциальных уравнений задачи.