Читать «Диалоги (май 2003 г.)» онлайн - страница 116

Александр Гордон

Поэтому можно было только описать свойства, которые имеет фрактальное броуновское движение, это степенное затухание корреляции, неограниченный спектр при нулевой частоте и некоторая зависимость от частоты. Мы рассуждали таким образом. Многие гидрологические явления, например, дождевой паводок на реке, формируются следующим образом. Выпадают осадки, поднимается уровень воды, потом он спадает, потом выпадают ещё осадки, потом уровень спадает.

То есть этот процесс мы можем приблизить к импульсным случайным процессам, у которых время наступления максимума неизвестно и сама амплитуда неизвестна. Но для того чтобы построить такой процесс, мы должны выдвинуть постулаты по этой модели, описывающие, какой она должна быть. Модель должна быть такой. Описываться законом сохранения, то есть импульса баланса тепла и вещества, допускать ясную математическую интерпретацию и показатель Харста (при всём уважении к этому показателю, это всё же не гравитационная постоянная и не скорость света) должен зависеть от физических свойств этой системы. Мы построили такой процесс, как для дождевых паводков, так и для динамики влажности почвы. И получили результаты такого плана. При стохастической аппроксимации выпадения дождей мы предположили, что здесь нет эффекта Харста, и хотели его получить путём нелинейного преобразования выпавших осадков на водосборе. И получили процесс, который характеризует динамику влажности почвы – как модельный процесс. Чтобы на этом процессе увидеть все характерные черты этого явления.

И.К. Мы рассмотрели нелинейную стохастическую модель инфильтрации воды в почве, демонстрирующую эффект Харста. Была принята простая стохастическая модель дождей. За большой промежуток времени число выпадающих дождей является случайной величиной, распределённой по закону Пуассона с известным параметром, равным среднему числу осадков за сутки. Затем предположили, что продолжительность времени между дождями существенно больше продолжительности самого дождя. Тогда слой осадков можно представить в виде импульсного процесса.

На основании принятой модели мы определили амплитуды импульсного процесса из дискретного уравнения для амплитуд, которые являются случайными величинами, и функции формы спада, которые определили из нелинейного дифференциального уравнения для функции форм спада. Пожалуйста, рисунок 4 по теме 1. Мы получили, что функция формы спада является степенной, медленно затухающей функцией времени и детерминированной функцией. А импульсы являются случайными величинами, и плотность их показана на рисунке 4-Б. Причём эта плотность хорошо аппроксимируется степенным распределением вероятности.