Читать «Невероятно – не факт» онлайн - страница 105
Александр Исаакович Китайгородский
Только после смерти Карно, в 1832 году на эту работу обратили внимание другие физики. Однако она мало повлияла на дальнейшее развитие науки из-за того, что все сочинение Карно было построено на признании неразрушимого и несоздаваемого «вещества» – теплорода.
Лишь вслед за исследованиями и размышлениями Майера, Джоуля и Гельмгольца, установивших закон эквивалентности тепла и работы, немецкий физик Рудольф Клаузиус (1822–1888 гг.) пришел ко второму началу термодинамики и математически сформулировал его. Клаузиус ввел в рассмотрение энтропию и показал, что сущность второго начала термодинамики сводится к неизбежному росту энтропии во всех реальных процессах.
Все, что мы сказали ранее по поводу истолкования естественного хода процессов, несомненно, очень остроумно и очень похоже на правду. Но тем не менее набросанную картину никак нельзя назвать завершенной. В таком виде наши молекулярно-кинетические рассуждения могут быть скептиками отнесены к разряду болтовни. Так оно, кстати, и было в конце XIX века. О наскоках противников молекул на статистическую теорию мы расскажем чуть ниже. Но уже сейчас можно утверждать, что выступления сторонников теории, заканчивающиеся чем-нибудь вроде: «Итак, мы показали, что второе начало термодинамики хорошо объясняется молекулярно-кинетической гипотезой», комментировались противниками примерно следующим образом: «Ну что же, гипотеза ваша выиграла, но наука от этого ничего не получила».
Дело заключается в том – об этом мы тоже уже говорили выше, – что теория становится теорией лишь тогда, когда с ее помощью можно что-то предсказать. Объяснения постфактум – это не наука; объяснения постфактум создают лишь ощущение умственного комфорта. Но, право же, ценность теории близка к нулю, если ее значение оказывается аналогичным значимости в нашей жизни удобного кресла.
Таким образом, перед сторонниками молекулярно-кинетической гипотезы встала задача перекинуть мост между молекулярными характеристиками и непосредственно измеряемыми физическими свойствами вещества. Мало того, надо было построить такую теорию, которая предсказывала бы, как те или иные свойства вещества будут изменяться с изменением состояния тела, то есть что будет делаться с тем или иным веществом, если растет температура, увеличивается давление…
На пути решения этой грандиозной задачи и возникла новая физика, получившая название статистической физики.
Статистическая физика
У нас, конечно, есть все основания говорить, что статистическая физика – это новая физика. Огромность числа частиц тела не позволяет описывать состояние каждой из них. Но в то же время эта огромность позволяет применить к изучению физических тел новые «статистические» методы. Основы статистической физики были заложены замечательным австрийским физиком Людвигом Больцманом (1844–1906 гг.). В серии работ Больцман показал, как осуществить для газов программу построения теории, связывающей средние характеристики молекулярного движения с физическими свойствами.
В 1877 году логическим завершением этих исследований явилось данное Больцманом статистическое истолкование второго начала термодинамики. Формула, связывающая энтропию и вероятность состояния системы, высечена на его памятнике.