Читать «Дилемма заключенного и доминантные стратегии. Теория игр» онлайн - страница 21
Хорди Деулофеу
Как уже предлагалось ранее, будет удобно сыграть несколько партий самому, чтобы попытаться определить выигрышную стратегию для одного из игроков и понять, как эта игра связана с предыдущей. Будем анализировать игру следующим образом: если проигрывает тот, кто напишет 100, выигрывает тот, кто напишет 99. Какое число нужно написать до этого, чтобы гарантированно получить 99 на следующем ходу? Это 88, так как в этом случае противник напишет любое число между 89 и 98, после чего первый игрок легко получит 99. Как и в прошлой игре, продолжая подобные рассуждения (перейдя к числу 88, затем 77, 66, ..., 11), мы увидим, что на этот раз нужно формировать группы по 11. Теперь нам известна выигрышная стратегия: тот, кто первым записывает 11 и последующие числа, кратные 11, первым получит 99 и выиграет. Если противник прибавляет n, нужно прибавлять 11 - n. Так как на первом ходу первый игрок не может получить 11, а второй может, это означает, что существует выигрышная стратегия для второго игрока. Как и в прошлой игре, при изменении конечного числа будет выигрывать первый игрок, если это число не будет кратно 11. Если это число будет делиться на 11, всегда будет побеждать второй игрок.
Допустим, что на столе m фишек и каждым ходом можно брать от 1 до n фишек (n < m). Выигрывает тот, кто забирает последнюю фишку. Для какого из игроков существует выигрышная стратегия — для первого или второго? В чем она заключается? Если игрок, взявший последнюю фишку, будет проигрывать, как изменится стратегия?
Речь идет не об одной игре, а о группе абстрактных игр. Две предыдущие игры — ее частные случаи. Следовательно, выигрышная стратегия для этой игры — это общая стратегия, которая применима к бесконечному множеству аналогичных игр. Эта стратегия формулируется так. Поделим m на n + 1 и определим остаток от деления. Он будет находиться в интервале от 0 до n. Возможны два случая:
1. Остаток от деления равен 0. В этом случае существует выигрышная стратегия для второго игрока, который должен оставлять на столе число фишек, кратное n+1. Для этого на каждом ходу, если первый игрок берет p фишек (0<p<n+1), второй должен брать n+1—p фишек. Это число всегда положительно, так как находится на интервале от 0 до n.
2. Остаток от деления равен r(0<r<n+1).В этом случае существует выигрышная стратегия для первого игрока. На первом ходу он должен взять r фишек, оставив на столе число фишек, кратное n+1. Теперь он может действовать подобно второму игроку из первого случая. Иными словами, если второй игрок берет p фишек (0<p<n+1), первый должен взять n+1—р.
Это общее решение применимо к бесконечному множеству игр. Читатель может применить его для такой игры: на столе 2010 фишек, на каждом ходу можно брать от 1 до 49 фишек. Для какого игрока существует выигрышная стратегия? В чем она заключается? Если мы изменим правила и тот, кто берет последнюю фишку, будет проигрывать, то достаточно заметить следующее: для победы будет достаточно взять предпоследнюю фишку, оставив на столе всего одну. В этом случае стратегия не изменится, просто нужно будет учесть, что число фишек равно m - 1, а не m.