Читать «Вселенная Стивена Хокинга (сборник)» онлайн - страница 37

Стивен Уильям Хокинг

У принципа неопределенности есть очень важные последствия для нашего восприятия мира. Даже спустя семьдесят лет эти последствия до конца не осознаны большинством философов, и по их поводу все еще ведутся дискуссии. Принцип неопределенности объявил мечту Лапласа о полностью детерминированной научной теории и модели Вселенной утопией. Мы, безусловно, не можем в точности предсказать будущие события, если мы не в состоянии даже достаточно точно описать современное состояние Вселенной! Но все же можно представить себе существование набора законов, полностью определяющих развитие событий для некоего сверхъестественного существа, которое способно наблюдать современное состояние Вселенной, не воздействуя на нее. Однако такого рода модели Вселенной не представляют особого интереса для нас, простых смертных. Похоже, что лучше придерживаться принципа экономии, известного как бритва Оккама, и исключить из теории ненаблюдаемые элементы. Исходя из этого подхода в 1920-х годах Вернер Гейзенберг, Эрвин Шрёдингер и Поль Дирак, опираясь на принцип неопределенности, переформулировали ньютоновскую механику, создав новую теорию под названием «квантовая механика». В этой теории в отношении частиц неприменимы понятия четко определенного положения и скорости как отдельных величин. Вместо этого мы имеем дело с квантовым состоянием, которое представляет собой комбинацию положения и скорости.

В общем, квантовая механика не предсказывает единственного, определенного результата наблюдения. Вместо этого она делает прогноз в отношении целого набора возможных исходов и позволяет определить, насколько вероятен каждый из них. То есть в случае выполнения одного и того же измерения для большого количества похожих систем, стартующих с одинакового состояния, окажется, что результат будет в некоторых случаях иметь вид А, в других случаях – вид B, и т. д. Можно предсказать приблизительное число раз, когда исход эксперимента будет иметь вид А или B, но не конкретный результат конкретного эксперимента. Таким образом, квантовая механика неизбежно привносит в науку элемент непредсказуемости и случайности. Эйнштейн решительно возражал против такого подхода, несмотря на ту роль, которую сыграл в его появлении, – ведь ему была присуждена Нобелевская премия за вклад в квантовую теорию. Тем не менее он так и не смог примириться с тем, что Вселенная отдана на волю случая, и выразил свой протест крылатой фразой: «Бог не играет в кости». Но большинство ученых охотно приняли квантовую механику именно потому, что ее предсказания прекрасно согласуются с результатами экспериментов. И действительно, квантовая теория оказалась исключительно успешной и лежит в основе практически всей современной науки и техники. Она определяет поведение транзисторов и интегральных микросхем – важнейших деталей телевизоров и компьютеров – и является фундаментом современных химии и биологии. Единственные области физики, где квантовомеханический подход пока еще не реализован в должной мере, – это теория тяготения и теория крупномасштабной структуры Вселенной.