Читать «Вселенная Стивена Хокинга (сборник)» онлайн - страница 178

Стивен Уильям Хокинг

В 1920-е годы появилась квантовая теория, с ее помощью удалось описать флуктуации материи и выделить количественные характеристики неопределенности. Таким образом, и на уровне этой полуклассической теории можно задаться вопросом о перемещении во времени. Однако, рассматривая квантовые поля через призму классического пространства-времени, квантовая теория не дает полной картины, но по крайней мере у нас есть представление о том, как с ней обращаться.

Последний, третий уровень может представлять полная квантовая теория гравитации, какой бы она ни оказалась. В случае с ней неясно, можно ли вообще ставить вопрос о перемещении во времени. Единственное, что можно сделать, это спросить наблюдателей, находящихся на бесконечности, каким образом они будут интерпретировать свои измерения. Будут ли они считать, что перемещение во времени произошло внутри локального пространства-времени?

Вернемся к классической теории: плоское пространство-время не содержит замкнутых времениподобных кривых. Их существование не предполагали и другие известные решения уравнений Эйнштейна. Поэтому для самого Эйнштейна огромным потрясением стало найденное в 1949 году Куртом Гёделем решение, в свете которого Вселенная представлялась пространством, наполненным вращающейся материей, с замкнутыми времениподобными кривыми, проходящими через каждую его точку. Решение Гёделя требовало космологической постоянной, которая, как известно, существует, хотя все последующие решения обходились без нее.

Наглядной иллюстрацией этому могут быть две космические струны, на высокой скорости движущиеся рядом друг с другом. Как видно из названия, космические струны – это объекты, обладающие достаточной длиной при крошечном поперечном сечении. Их существование было предсказано некоторыми теориями элементарных частиц. Гравитационное поле одной космической струны представляет собой плоское пространство с удаленным клинообразным сектором, на остром конце которого находится струна. Так, если обогнуть космическую струну, преодоленное расстояние окажется меньше предполагаемого, но это не повлияет на время. Это означает, что пространство-время вокруг одной космической струны не содержит замкнутых времениподобных кривых.

Однако при наличии второй космической струны, движущейся относительно первой, ее клинообразный сектор будет укорачивать как пространственные расстояния, так и интервалы времени. А при условии, что относительно друг друга струны будут двигаться со скоростью, приближающейся к скорости света, время облета вокруг обеих струн сократится настолько, что можно будет вернуться в момент, предшествовавший отправлению. Другими словами, в этой системе существуют замкнутые времениподобные кривые, по которым можно отправиться в собственное прошлое.

Пространство-время космической струны содержит материю, обладающую положительной плотностью энергии, и потому физически осмысленно. Однако скручивание, которое порождает замкнутые времениподобные кривые, расширяется бесконечно как в пространстве, так и вперед и назад во времени. То есть с момента появления такие пространства наделены возможностью перемещения во времени. У нас нет оснований полагать, что наша Вселенная создана именно по этому шаблону, как нет и надежных сведений о гостях из будущего. (Если, конечно, не принимать в расчет теорию заговора, согласно которой НЛО прилетают из будущего, и правительство об этом знает, но тщательно скрывает. Хотя всем известно, что правительство не слишком стремится хранить свои секреты.) Из этого можно предположить, что замкнутые времениподобные кривые не существуют в прошлом вплоть до некоторой поверхности постоянного времени S.