Читать «До и после Победы. Перелом. Часть 1» онлайн - страница 71

Сергей Владимирович Суханов

Но это в снарядах. В ракетах же было важно, чтобы порох горел подольше, малыми порциями, чтобы он подольше подталкивал ракету по направлению к цели. Да и ограничения по массе были не последним фактором — ведь шашки свободно лежали внутри корпуса, соответственно, все давление газов передавалось и на корпус. Ну, не совсем свободно — они удерживались несколькими решетками и системой проволок, чтобы не болтались внутри корпуса, пока горят, а то от ударов могли и растрескаться, отчего площадь горения, а, следовательно, и давление, повышались, отчего, в свою очередь, еще больше повышалась скорость горения. Но из-за того, что стенки корпуса свободно омывались горячими газами, их толщина в том же РС-132 была пять миллиметров. И эти пять миллиметров должны были выдержать не только высокое давление, но и температуру, которая снижала предел прочности стали. Правда, недолго — двигатель работал меньше секунды, поэтому сталь слишком ослабнуть не успевала из-за инерции прогрева. Нам же, чтобы достичь больших высот и при этом не нарваться на большие ускорения, надо было повышать длительность работы двигателя. Но это требовало изменения всей внутренней баллистики двигателя, включая сопло.

Поэтому в первой половине сорок второго мы шли по пути изменения механической конструкции ракет, стараясь кардинально не менять ни состав топлива, ни геометрию шашек. Так, еще весной сорок второго мы начали покрывать изнутри стенки теплозащитой на основе оксида магния, что позволило снизить их толщину на два миллиметра — а это почти восемь килограммов сэкономленного веса. Да еще количество взрывчатки снизили до полукилограмма, и толстый корпус снаряда заменили стеклопластиковым обтекателем, а в качестве поражающих элементов применили стальные шарики. Правда, сэкономленный на боевой части вес был съеден аппаратурой управления, но вот уменьшение веса корпуса ракетного двигателя, использование стеклопластиковых стабилизаторов вместо стальных, повысило высотность ракет с изначальных трех до четырех с половиной.

Но это было все, что мы смогли выжать из советских снарядов без изменения конструкции и рецептуры пороха. И с рецептурой пороха было сложнее.

Попытка полностью заменить динитротолуол на нитроглицерин летом сорок второго нам не удалась — горение оказалось нестабильным, возникал и пульсации и затухания. Так-то идея была отличной — калорийность нитроглицерина на сорок процентов выше, чем у ДНТ, а кислородный баланс — вообще положительный, то есть получаем более полное сгорание пороха, соответственно, повысится и температура газов, и их объем, а значит и тяга. Да и для стабильного горения такому пороху требовалось всего двадцать атмосфер, а не минимум сорок, как нашему и советскому. Англичане с американцами такой порох и применяли — в артиллерии уже и сейчас, а потом мы узнали и про ракеты. И, кстати, они тоже столкнулись с таким нестабильным горением. Попробовали мы и немецкий — дигликолевый — порох. Причем нескольких сортов, с калорийностью начиная чуть ли не от двух с половиной тысяч килоджоулей на килограмм, или примерно шестьсот килокалорий — это сравнить с нашим в три шестьсот килоджоулей, или восемьсот шестьдесят килокалорий. С ним было еще хуже — и ниже импульс, и минимальное давление требовалось чуть ли не шестьдесят атмосфер, а лучше — восемьдесят. А это снова — утолщение стенок корпуса — наши три миллиметра такое давление держали уже не всегда. Хотя, конечно же, на таком менее калорийном порохе живучесть артиллерийских стволов возрастала чуть ли не в три раза — мы это прочувствовали, когда перевели часть трофейной ПТО на наши пороха — стволы стали выгорать значительно быстрее, и лишь напыление металлов как-то замедляло износ стволов. В своих зенитных ракетах, кстати, немцы использовали все-таки нитроглицериновый — со своим у них тоже не получилось. Точнее, со своим они пробовали делать уже после того, как Гитлер сказал своим конструкторам "Сделайте точно как у русских".