Читать «Параллельное программирование на С++ в действии. Практика разработки многопоточных программ» онлайн - страница 14

Энтони Уильямс

Но предположим, что вы уже решили, что хотите распараллелить приложение, будь то для повышения производительности, ради разделения обязанностей или просто потому, что сегодня «День многопоточности». Что это означает для программиста на С++?

1.3. Параллелизм и многопоточность в С++

Стандартизованная поддержка параллелизма за счет многопоточности — вещь новая для С++. Только новый стандарт С++11 позволит писать многопоточный код, не прибегая к платформенно-зависимым расширениям. Чтобы разобраться в подоплёке многочисленных решений, принятых в новой стандартной библиотеке С++ Thread Library, необходимо вспомнить историю.

1.3.1. История многопоточности в С++

Стандарт С++ 1998 года не признавал существования потоков, поэтому результаты работы различных языковых конструкций описывались в терминах последовательной абстрактной машины. Более того, модель памяти не была формально определена, поэтому без поддержки со стороны расширений стандарта С++ 1998 года писать многопоточные приложения вообще было невозможно.

Разумеется, производители компиляторов вправе добавлять в язык любые расширения, а наличие различных API для поддержки многопоточности в языке С, например, в стандарте POSIX С Standard и в Microsoft Windows API, заставило многих производителей компиляторов С++ поддержать многопоточность с помощью платформенных расширений. Как правило, эта поддержка ограничивается разрешением использовать соответствующий платформе С API с гарантией, что библиотека времени исполнения С++ (в частности, механизм обработки исключений) будет корректно работать при наличии нескольких потоков. Хотя лишь очень немногие производители компиляторов предложили формальную модель памяти с поддержкой многопоточности, практическое поведение компиляторов и процессоров оказалось достаточно приемлемым для создания большого числа многопоточных программ на С++.

Не удовлетворившись использованием платформенно-зависимых С API для работы с многопоточностью, программисты на С++ пожелали, чтобы в используемых ими библиотеках классов были реализованы объектно-ориентированные средства для написания многопоточных программ. В различные программные каркасы типа MFC и в универсальные библиотеки на С++ типа Boost и АСЕ были включены наборы классов С++, которые обертывали платформенно-зависимые API и предоставляли высокоуровневые средства для работы с многопоточностью, призванные упростить программирование. Детали реализации в этих библиотеках существенно различаются, особенно в части запуска новых потоков, но общая структура классов очень похожа. В частности, во многих библиотеках классов С++ применяется крайне полезная идиома захват ресурса есть инициализация (RAII), которая материализуется в виде блокировок, гарантирующих освобождение мьютекса при выходе из соответствующей области видимости.

Во многих случаях поддержка многопоточности в имеющихся компиляторах С++ вкупе с доступностью платформенно-зависимых API и платформенно-независимых библиотек классов типа Boost и АСЕ оказывается достаточно прочным основанием, на котором можно писать многопоточные программы. В результате уже написаны многопоточные приложения на С++, содержащие миллионы строк кода. Но коль скоро прямой поддержки в стандарте нет, бывают случаи, когда отсутствие модели памяти, учитывающей многопоточность, приводит к проблемам. Особенно часто с этим сталкиваются разработчики, пытающиеся увеличить производительность за счет использования особенностей конкретного процессора, а также те, кто пишет кросс-платформенный код, который должен работать независимо от различий между компиляторами на разных платформах.