Читать «Математика и криптография : тайны шифров и логическое мышление» онлайн - страница 9
Роман Викторович Душкин
4. Наконец, в шифрограммах нежелательно употреблять короткие слова: предлоги, союзы, частицы, встречающиеся в обычных текстах много раз. Это всё — первые подсказки для криптоаналитика, при помощи которых он сможет взломать шифр. Сообщение вполне может быть понятным без предлогов и частиц: «Прибыть пункт распределения завтра десять тридцать». Попробуй зашифровать эту фразу каким-нибудь шифром простой подстановки, а потом применить к ней метод частотного анализа, и ты увидишь, насколько это сложнее.
На этом всё. Надеюсь, что тебе понравился наш первый урок. На следующей неделе мы изучим кое-что более сложное.
Неделя 2. Шифр многоалфавитной замены
Перед тем, как мы начнём изучать новый, более секретный способ шифрования и расшифровки (если помнишь, прошлый способ в принципе несекретен), я хотел бы договориться с тобой о паре важных вещей.
Во-первых, давай считать пробел символом. Да, с математической точки зрения пробел — это такой же символ, как и любой другой. Я специально использую слово «символ», а не «буква», чтобы не путать. Итак, все буквы, цифры, пунктуационные знаки и даже пробел являются
Во-вторых, давай в дальнейшем для шифрования использовать только заглавные буквы русского алфавита и пробел, причём будем считать пары букв «Е» и «Ё», а также «Ъ» и «Ь» неразличимыми. Теперь в наших текстах и шифрограммах символ «Е» будет обозначать как букву «Е», так и букву «Ё», а символ «Ъ» будет обозначать буквы «Ъ» «Ь». Таким образом, весь алфавит теперь состоит из следующих символов:
Пробел А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Э Ю Я
Примечательность этого алфавита в том, что в нём содержится
С каждым из этих символов мы сопоставим число от 0 до 31, которое назовём
После этого надо научиться складывать и вычитать особым образом (математики называют такие операции сложением и вычитанием с вычетами). Итак, у нас есть только тридцать два числа — от 0 до 31. Мы хотим складывать и вычитать при помощи этих чисел, и никакие другие числа нам использовать нельзя. Очень просто, например, сложить 5 и 8, поскольку получится 13. Но как быть, если нам надо сложить, скажем, 23 и 17? Обычная арифметика подсказывает, что 23 + 17 = 40, но у нас нет чисел, которые больше 31. Как быть? Всё просто. Если полученный результат больше 31, надо вычесть из него общее количество чисел, то есть 32. Другими словами, по правилам нашей новой арифметики (немного странной на первый взгляд) получается, что 23 + 17 = 40–32 = 8.
То же самое с вычитанием. Легко вычесть из 15, скажем, 12, поскольку получится 3. А как вычесть из меньшего числа большее, например, из 10–27? Тут тоже просто. Если из меньшего числа требуется вычесть большее, то сначала к меньшему надо прибавить 32. Таким образом: 10–27 = 10 + 32–27 = 15.