Читать «Квантовый кот вселенной» онлайн - страница 12
Эрвин Шрёдингер
Последний пример, который мы дадим, близко сходен со вторым, но имеет особый интерес. Легкое тело, подвешенное на длинной тонкой нити и находящееся в равновесии, часто употребляется физиками для измерения слабых сил, отклоняющих его от этого положения, то есть для измерения электрических, магнитных или гравитационных сил, прилагаемых так, чтобы повернуть его вокруг вертикальной оси (легкое тело должно быть, конечно, выбрано надлежащим образом для каждой специальной цели). Продолжающиеся попытки повысить точность этого весьма часто употребляемого приспособления «крутильных весов» столкнулись с любопытным пределом, который чрезвычайно интересен сам по себе. Выбирая все более и более легкие тела и более тонкую и длинную нить, чтобы сделать весы чувствительными ко все более слабым силам, достигли предела, когда подвешенное тело стало уже чувствительно к ударам теплового движения окружающих молекул и начало выполнять непрерывный неправильный «танец» вокруг своего равновесного положения, танец, весьма сходный с дрожанием капли во втором примере. Хотя это поведение не ставит еще абсолютного предела точности измерений, получаемых с помощью подобных весов, оно все-таки кладет практический предел. Неподдающийся контролю эффект теплового движения конкурирует с действием той силы, которая должна быть измерена, и лишает значения единичное наблюдаемое отклонение. Вы должны проделать свои наблюдения много раз, чтобы нейтрализовать эффект броуновского движения вашего инструмента. Этот пример, я думаю, является особенно иллюстративным, ибо наши органы чувств, в конце концов, представляют собой тоже род инструмента. Мы можем видеть, как бесполезны они были бы, если бы стали слишком чувствительны.
Теперь достаточно примеров. Я просто добавляю, что нет ни одного закона физики или химии из тех, которые имеют отношение к организму или к его взаимодействию с окружающей средой, который я не мог бы выбрать как пример. Детальное объяснение может быть более сложным, но главный пункт был бы всегда тем же самым, и таким образом, дальнейшее описание стало бы однообразным.
Но я хотел бы прибавить одно важное количественное положение, касающееся степени неточности, которую надо ожидать в любом физическом законе. Это так называемый закон √n. Сначала я иллюстрирую его простым примером, а дальше обобщу его.
Если я скажу, что некоторый газ при определенном давлении и температуре имеет определенную же плотность, то я могу это выразить, сказав, что внутри какого-то объема (который по размеру подходит для эксперимента) имеется при этих условиях как раз п молекул газа. Если в какой-то момент времени вы сможете проверить мое утверждение, то вы найдете его неточным, и отклонение будет порядка √n. Следовательно, если n = 100, вы нашли бы отклонение равным приблизительно 10. Таким образом, относительная ошибка здесь равна 10 %. Но если n=1 миллиону, вы бы, вероятно, нашли отклонение равным примерно 1000, и таким образом относительная ошибка равняется 1/10 %. Теперь, грубо говоря, этот статистический закон является весьма общим. Законы физики и физической химии неточны внутри вероятной относительной ошибки, имеющей порядок 1/√n, где n есть количество молекул, совместно участвующих в проявлении этого закона – в его осуществлении внутри той области пространства или времени (или их обоих), которая подлежит рассмотрению или служит для какого-либо определенного эксперимента.