Читать «Математический аппарат инженера» онлайн - страница 69

Виталий Петрович Сигорский

- 576 -

4, получим для рассматриваемого автомата минимальную форму с пятью состояниями и общей таблицей переходов:

Следует отметить, что автомат, все состояния которого эквивалентны, сводится к автомату с одним состоянием, т. е. представляет собой по существу комбинационную схему. Автомат, среди состояний которого нет эквивалентных, является несократимым.

Рис. 241. Граф неполного автомата (а) и его минимальная форма (б).

Если М' – минимальная форма автомата М, то она единственна и несократима.

9. Неполные автоматы. В практике встречаются случаи, когда не каждый символ из входного алфавита может быть подан на автомат, находящийся в определенном состоянии (ограничения на входе), или его выходы при некоторых входных воздействиях не представляют интереса (неопределенность выходов). Тогда приходится иметь дело с неполными автоматами, общая таблица переходов которых содержит прочерки вместо состояний и выходов для запрещенных входов, а также вместо неопределенных выходов.

Например, таблица для неполного автомата, граф которой изображен на рис. 241, a, имеет следующий вид:

- 577 -

Здесь вход 0 в состояниях 1 и 5, а также вход 1 в состояниях 0 и 5 являются запрещенными. Кроме того, в состоянии 3 при воздействии 0 и в состоянии 4 при воздействии 1 выходы не определены.

Входная последовательность называется допустимой для автомата в состоянии si, если она не нарушает ограничений на входе ни в каком состоянии автомата М и порождаемый ею выход определен на заключительном такте. На других тактах входной последовательности выходы могут быть и не определены, но последовательность состояний обязательно должна существовать. Например, для приведенного автомата в состоянии 0 допустимая входная последовательность {0, 1,0} порождает последовательность состояний {1, 4, 5} и заключительный выход 0. В то жевремя последовательность {0, 1, 1} не допустима, так как заключительный выход не определен.

Число состояний неполного автомата иногда можно сократить изложенными в предыдущих разделах методами, произвольно интерпретируя прочерки в его таблице и рассматривая его как полный автомат. Однако такой путь не гарантирует получения минимальной формы.

Сокращенная форма неполного автомата М – это такой автомат М', который по отношению к допустимым для М входным последовательностям ведет себя на выходах так же, как и исходный автомат М, но имеет меньшее число состояний. Автомат М' квазиэквивалентен автомату М. Отношениеквазиэквивалентности рефлексивно и транзитивно, но не симметрично, т. е обладает всеми свойствами отношения включения. Поэтому говорят также, что М' включает М и записывают М ⊂М'. При этом из М ⊂М' вовсе не следует М' ⊂М, что иногда выражают словами: М' делает столько же и, быть может, больше, чем М.

10. Минимизация неполных автоматов. Эта задача сводится к поиску квазиэквивалентного автомата, который имеет наименьшее число состояний, и решается следующим образом.