Читать «Математический аппарат инженера» онлайн - страница 65
Виталий Петрович Сигорский
С помощью графа автомата легко выделить следующие характерные типы его состояний:
1) преходящее состояние, из которого можно перейти, но крайней мере, в одно другое состояние, но после этого уже нельзя возвратиться в него ни при каком воздействии (соответствующая вершина не имеет заходящих дуг, но имеет хотя бы одну исходящею дугу);
2) тупиковое состояние, в которое можно перейти, по крайней мере, из одного другого состояния, но после этого уже нельзя выйти из него ни при каком воздействии (соответствующая вершина не имеет исходящих дуг в другие вершины, но имеет хотя бы одну входящую дугу из другой вершины);
3) изолированное состояние, из которого нельзя перейти ни в какое другое состояние и в него нельзя попасть ни из какого другого состояния (соответствующая вершина содержит только петлю).
Аналогичные определения можно дать для некоторых совокупностей состояний, рассматриваемых как подавтоматы. Если начальное состояние автомата М принадлежит непустому множеству Si состояний, которое составляет тупиковый или изолированный подавтомат, то M можно упростить исключением всех состояний, которые не принадлежат множеству Si, и всех дуг, начинающихся в этих состояниях.
Пусть М1, М2 и M3 - соответственно преходящий, тупиковый и изолированные подавтоматы автомата М, которые характеризуются множествами состояний S1, S2 и S3. Очевидно, выделение таких подавтоматов соответствует разбиению множества S состояний автомата М на непересекающиеся подмножества S1, S2 и S3, представляющие собой классы эквивалентности ( S1 ∪ S2 ∪ S3 = S и S1 ∩ S2 ∩ S3 = ∅ ). Как следует из обобщенного графа (рис. 237), матрица соединения автомата может быть представлена в виде:
,
- 570 -
где μ11, μ22, μ33 - матрицы подавтоматов М1, М2 и М3; μ12 - матрица, характеризующая переходы от состояний преходящего автомата М1 к состояниям тупикового автомата М2. Отсюда следует, что разбиение автомата М на подавтоматы М1, М2 и М3 можно осуществить преобразованием его матрицы соединений к стандартному виду путем перестановки соответствующих строк и столбцов. Например, для автомата, граф которого изображен на рис. 238, имеем:
Рис. 237. Обобщенный граф конечного автомата.
Рис. 238. Граф конечного автомата к примеру разбиения на подавтоматы.
Отсюда следует, что S1 = {3, 6} составляет преходящий подавтомат, S2 = {2, 4, 7} - тупиковый подавтомат и S3 = {1, 5} - изолированный подавтомат. Если начальное состояние принадлежит множеству S2, то можно упростить автомат, исключив состояния S1 ∪ S3 = {3, 6, 1, 5}, а в случае принадлежности начального состояния множеству S3 автомат упрощается исключением состояний S1 ∪ S2 = {3, 6, 2, 4, 7}.
6. Синтез конечных автоматов. Реализация конечных автоматов сводится к синтезу соответствующей комбинационной схемы, преобразующей входные переменные x(ν) и s(ν) в выходные переменные y(ν) и s(ν + 1) в соответствии с заданными характеристическими функциями s(ν + 1) = δ (x(ν), s(ν)) и y(ν)= λ (x(ν), s(ν)). Для сохранения состояний s(ν + 1) до следующего такта в цепь обратной связи вводится необходимое количество элементов памяти.