Читать «Математический аппарат инженера» онлайн - страница 41
Виталий Петрович Сигорский
0̅ = 1; x ∨ 1 =1; x ∧ 0 = 0 и т. д.
- 64 -
Так, законы идемпотентности доказываются следующими преобразованиями:
х ∨ х = (х ∨ х) ∧ 1 = (х ∨ х) ∧ (х ∨ x̅ ) = х ∨ (х ∧ (х ∨ х)) = х ∨ 0 = х;
х ∧ х = (х ∧ х) ∨ 0 = (х ∧ х) ∨ (х ∧ x̅ ) = х ∧ (х ∨ x̅ ) = х ∧ 1 = х.
Используя полученные соотношения, имеем:
х ∨ 1 = x ∨ ( x ∨ x̅ ) = (х ∨ х) ∨ x̅ = х ∨ x̅ = 1; x ∧ 0 = x ∧ ( x ∧ x̅ ) = x ∧ x̅ = 0.
Доказательство законов поглощения имеет вид:
x ∨ (x ∧ y) = (x ∧ 1) ∨ (x ∧ y) = x ∧ (1 ∧ y) = x ∧ 1 = x;
x ∧ (x ∨ y) = (x ∨ 0) ∧ (x ∨ y) = x ∨ (y ∧ 0) = x ∨ 0 = x.
Соотношение
из х ∨ x̅ = 1 по закону коммутативности следует x̅ ∨ x = 1, откуда сравнением с
Интересно доказательство закона де Моргана. На основании свойств отрицания равенство функций x̅ ̅∨̅ ̅y̅ и x̅ ∧ y̅ должно означать, что
(х ∨ у) ∨ ( x̅ ∧ y̅ ) = 1 и (х ∨ у) ∨ ( x̅ ∧ y̅ ) = 0.
Действительно,
(х ∨ у) ∨ ( x̅ ∧ y̅ ) = ((х ∨ у) ∨ x̅ ) ∧ ((х ∨ у) ∨ y̅ ) = (( x ∧ x̅ ) ∨ y ) ∧ (x ∨ (y ∨ y̅ )) =
= (1 ∨ y) ∧ (x ∨ 1) = 1 ∧ 1 = 1, а также
(х ∨ у) ∧ ( x̅ ∧ y̅ ) = (х ∧ ∨ ( x̅ ∧ y̅ ) = (у ∧ ( x̅ ∧ y̅ ) = ((x ∧ x̅ ) ∧ y̅ ) ∨ ((y ∧ y̅ ) ∧ x̅ ) =
= (0 ∧ y̅ ) ∨ ( x̅ ∧ 0) = 0 ∨ 0 = 0.
Следовательно, соотношение x̅ ̅∨̅ ̅y̅ = x̅ ∧ y̅ доказано. Аналогично доказывается и второй закон.
Упрощение записи формул.Операции дизъюнкции и конъюнкции удовлетворяют законам коммутативности и ассоциативности. Поэтому если переменные или формулы связаны только посредством одной из этих операций, то их можно выполнять в лгсбом порядке, а формулы записывать без скобок. Например:
((х1 ∨ x2) ∨ (х3 ∨ x4) ∨ х5 = х1 ∨ x2 ∨ х3 ∨ x4 ∨ х5,
а также (х1 ∧ x2) ∧ (x3 ∧ (х4 ∧ x5) = х1 ∧ x2 ∧ x3 ∧ х4 ∧ x5.
Если считать, что операция конъюнкции должна предшествовать операции дизъюнкции (конъюнкция связывает сильнее дизъюнкции), то можно опустить скобки, в которые заключены формулы со знаком конъюнкции. При наличии скобок в первую очередь должны выполняться операции внутри скобок, независимо от их старшинства. Обычно опускают также скобки, в которые заключены формулы со знаком отрицания.
Еще одно упрощение связано с символикой. Знак конъюнкции в формулах можно опустить и вместо х ∧ у писать ху. Операцию конъюнкции часто называют логическим умножением, а операцию дизъюнкции - логическим сложением.
С учетом приведенных условий запись существенно упрощается. Например, формуле (x ∧ (y ∧ z̅ )) ∨ (( x̅ ̅∨̅ ̅y̅ ) ∧ z) соответствует запись xyz̅ ∨ x̅ ̅∨̅ ̅y̅ z.
7. Переключательные схемы. В качестве одной из интерпретаций булевых функций рассмотрим электрическую схему, состоящую из источника напряжения (батареи), лампочки и одного или двух ключей (х1 и x2). Ключи управляются кнопками с двумя состояниями: кнопка нажата (1) и кнопка отпущена (0). Если в исходном состоянии ключ разомкнут, то при нажатии кнопки он замыкается.
- 65 -
Ключ может быть сконструирован и так, что в исходном состоянии он замкнут, тогда нажатие кнопки означает его размыкание, т. е. приводит к противоположному результату. Поэтому нормально замкнутые ключи обозначим через x̅1 и x̅2.