Читать «Математический аппарат инженера» онлайн - страница 40

Виталий Петрович Сигорский

Функции небольшого числа переменных можно задавать с помощью таблиц, подобных таблицам сложения и умножения одноразрядных чисел. Для этого нужно только указать значения функции для каждой комбинации значений ее аргументов. Основными в двузначной логике являются следующие три функции.

Отрицание - функция у = f(х), принимающая значения 1, когда х = 0, и значение 0, когда х = 1; она обозначается у = x̅ (читается «не х»).

Дизъюнкция — функция у = f(x1, x2), принимающая значение 0 тогда и только тогда, когда оба аргумента имеют значение 0; она обозначается у = x1 ∨ x2 (читается «у = x1 или x2»).

Конъюнкция—функция у = f(x1, x2), принимающая значение 1 тогда и только тогда, когда оба аргумента имеют значение 1; она обозначается у = x1 ∧ x2 («у = x1 и x2»).

Таблицы для этих функций имеют вид:

3. Логические операции и формулы.Булевы функции можно рассматривать как логические операции над величинами, принимающими два значения - 0 и 1. Отрицание - это одноместная операция, а дизъюнкция и конъюнкция — двухместные операции. При этом выражения x̅ , x1 ∨ x2, x1 ∧ x2 являются логическими формулами.

Более сложные формулы получаются замещением входящих в них переменных другими логическими формулами, которые обычно заключаются в скобки. Например, положив x1 = a̅ и x2 = b ∧ c из x1 ∨ x2,имеем ( a̅ ) ∨ (b ∧ c).

- 63 -

Каждая формула определяет некоторую булеву функцию. Ее значение при различных значениях переменных определяется на основании таблиц функций, приведенных в (2). Так, при а = 0, b = 1 и с = 0 имеем:

x1 = a̅ = 0̅ =1, x2 = b ∧ с = 1 ∧ 0 = 0 и x1 ∨ x2 = a̅ ∨ (b ∨ c) = 1 ∨ 0 = 1. Аналогично получаем значения функции и при других комбинациях значений аргументов.

Две функции (как и определяющие их формулы) считаются равносильными,если при любых значениях аргументов эти функции (формулы) принимают одинаковые значения. Равносильные функции соединяются знаком равенства, например: (х ∧ у) ∨ z̅ = ( ) ∧ z или ((х ∨ x̅ ) ∧ у) ∨ (у ∨ х) == х ∨ у. Равносильность функций проверяется по таблицам основных операций, причем необходимо сравнить их значения для всех комбинаций значений переменных.

Множество всех булевых функций вместе с операциями отрицания, конъюнкции и дизъюнкции образует булеву алгебру.

На основе определения основных операций нетрудно убедиться в справедливости следующих тождеств (свойств) булевой алгебры:

коммутативность

х ∨ y = y ∨ х, х ∧ y = y ∧ х;

ассоциативность

х ∨ ( y ∨ z) = (х ∨ y) ∨ z, х ∧ ( y ∧ z) = (х ∧ y) ∧ z;

дистрибутивность

х ∧ ( y ∨ z) = (х ∧ y) ∧ (х ∨ z), х ∨ ( y ∧ z) = (х ∧ y) ∧ (х ∨ z);

свойство констант

х ∨ 0 = x, х ∧ 1 = x;

свойство отрицания

х ∨ x̅ = 1, х ∧ x̅ = 0.

Приведенные свойства позволяют получить ряд других важных законов и тождеств уже без обращения к таблицам соответствия: (законы де Моргана), х ∨ (х ∧ у) = х ∧ (х ∨ у) = х (законы поглощения) х ∨ х = х ∧ х = х (законы идемпотентности), а также тождества x ∨ (x̅ ∧ y) = x ∨ y; (x ∧ y) ∨ (x ∧ z) ∨ (x ∧ z̅ ); = (x ∧ z) ∨ (y ∧ z̅ ); x̅ = x; 1̅ = 0;