Читать «Математический аппарат инженера» онлайн - страница 25
Виталий Петрович Сигорский
В соответствии с правилом Крамера неизвестные xk(k = 1, 2, ..., n) определяются соотношением:
где Δ — определитель системы уравнений Δsk — алгебраические дополнения.
- 38 -
Определитель Δ представляет собой числовую функцию, которая вычисляется по определенным правилам на основании квадратной таблицы, состоящей из коэффициентов системы уравнений
Табличное представление определителя Δ по форме совпадает с матрицей системы уравнений, т.е. состоит из тех же элементов и в том же порядке, что и матрица А. В таких случаях его называют
Алгебраическое дополнение Δsk вычисляется как определитель матрицы, полученной удалением из матицы A s-й строки и k-го столбца, причем этот определитель умножается еще на (-1)s+k. Величину Δsk называют также
Записав для всех элементов столбцевой матрицы x выражения по правилам Крамера, получим решение системы уравнений в виде:
- 39 -
откуда, сравнивая с A-1q, имеем
Из полученного выражения следует правило определения обратной матрицы: 1) элементы aij данной матрицы A n-го порядка заменяются их алгебраическими дополнениями Δij: 2) матрица алгебраических дополнений транспонируется, в результате чего получаем присоединенную или взаимную матрицу к А ( она обозначается через AdjA); 3) вычисляется определитель Δ матрицы А и присоединенная матрица AdjA умножается на величину, обратную этому определителю.
Обратная матрица существует для матрицы А при условии, что detA ≠ 0. Такие матрицы называются
- 40 -
Матрица, обратная произведению двух матриц, равна переставленному произведению матриц, обратных исходным, т.е. (AB)-1 = B-1A-1. Действительно, умножив обе части этого равенства на АВ, приходим тождеству E = B-1A-1(AB), так как B-1(A-1A)B = B-1EB = B-1B =E, где E — единичная матрица n-го порядка.
10. Блочные матрицы. Часто матрицу удобно разбить вертикальными и горизонтальными линиями на блоки которые являются матрицами меньших размеров и при выполнении операций рассматриваются как элементы исходных матриц. Операции над блочными матрицами выполняются по сформулированным выше правилам при условии, что эти операции допускаются размерами соответствующих матриц.
Пусть, например, матрицы А и В разбиты на блоки (жирными линиями) так, чтобы для соответствующих блоков имела смысл операция умножения, т.е.
По правилу умножения прямоугольных матриц можно записать:
Вычислим блоки C11 и C21 матрицы C:
- 41 -
В результате имеем
Конечно, тот же результат получается и при непосредственном перемножении матриц. Но разбиение на блоки позволяет оперировать с матрицами меньших размеров ( это бывает необходимо, например, когда не хватает места на бумаге или ячеек оперативной памяти машины) и особенно удобно, если можно выделить нулевые блоки.