Читать «Статистика и котики» онлайн - страница 27

Владимир Савельев

Пример: предположим, что вы выращиваете помидоры, и вам необходимо определить, какой из двух сортов демонстрирует лучшую урожайность. Чтобы это сделать, вам необходимо подсчитать количество помидоров при каждом кусте и занести эту информацию в таблицу. Дальше вы применяете к этим данным t-критерий Стьюдента и по нему судите о наличии различий между сортами. Если сортов больше двух, то ваш выбор — дисперсионный анализ с последующим сравнением с помощью специальных post-hoc-критериев.

МЕРЫ РАЗЛИЧИЙ ДЛЯ СВЯЗАННЫХ ВЫБОРОК

Позволяют определить различия между двумя связанными выборками. Также делятся на параметрические и непараметрические:

Пример: Представим, что вы преподаватель курсов повышения квалификации, и вам интересно узнать, вынесли ли ваши слушатели что-нибудь полезное с занятий. Чтобы это сделать, вам необходимо разработать некоторый проверочный тест и раздать его слушателям до начала занятий и после их окончания. T-критерий Вилкоксона позволит вам проверить, стали ли слушатели лучше знать ваш предмет. Если же вы провели несколько таких измерений, то ваш вариант — это критерий Фридмана.

МЕРЫ СВЯЗИ

Данный класс критериев (называемых также коэффициентами корреляции) позволяет найти взаимосвязь между переменными. Математически взаимосвязь — это совместное изменение переменных.

Если она положительна и равна 1, то увеличение значения первой переменной сопровождается увеличением значения второй. Если она отрицательна (-1), то высокое значение первой переменной сопровождается низким значением второй. Коэффициент корреляции, равный 0, обозначает отсутствие взаимосвязи.

Самыми популярными коэффициентами корреляции являются r Пирсона (параметрический) и p Спирмена (непараметрический).

Пример: вы решили провести психологическое исследование и выяснить, существует ли взаимосвязь между интеллектом и уровнем дохода. Для этого вам необходимо найти группу испытуемых, измерить их интеллект, узнать их среднемесячный доход и найти коэффициент корреляции. Если он высок и положителен, то более интеллектуальные люди получают больше денег.

Если вы получили подобный результат, необходимо быть очень внимательными при его интерпретации. Поскольку равновероятными могут быть следующие варианты.

Более умные люди получают работу с более высоким заработком.

Высокий доход позволяет больше времени уделять саморазвитию в целом и развитию интеллекта в частности.

Существует неизвестная переменная (фактор), обусловливающая эту взаимосвязь.

Взаимосвязь является случайным совпадением.

РЕГРЕССИОННЫЙ АНАЛИЗ

Данная группа методов позволяет построить функциональную математическую модель — уравнение, которое помогает предсказать значение некоторой целевой переменной, используя значения ряда переменных, называемых предикторами.

Наиболее распространенными методами регрессионного анализа являются линейная и логистическая регрессии. Линейная регрессия позволяет предсказать точное количественное значение некоторой переменной, представленной в метрической шкале. Логистическая регрессия позволяет предсказать вероятность принадлежности объекта к тому или иному классу.