Читать «Статистика и котики» онлайн - страница 26
Владимир Савельев
Наблюдение — измеренный объект. Котик.
Переменные — свойства объектов, которые поддаются измерению. В книге — котиковое счастье, здоровье, размер и т. д.
Значение переменной — степень выраженности того или иного свойства у конкретного объекта. Иными словами — насколько данный котик здоров, сыт и счастлив.
МЕРЫ ЦЕНТРАЛЬНОЙ ТЕНДЕНЦИИ
Используются, когда вам нужно отразить наиболее типичные значения, присутствующие в вашей выборке.
Состав:
1. Мода — наиболее часто встречающееся значение.
2. Медиана — середина упорядоченного ряда значений.
3. Среднее арифметическое — сумма значений, деленная на их количество.
Пример: определение наиболее типичной зарплаты в нашей стране можно осуществлять по двум показателям — среднему арифметическому и медиане. Первая определяется как количество денег, деленное на количество людей, а второе — как зарплата человека, стоящего ровно посередине между самым бедным и самым богатым. Как правило, эти значения различаются — средняя зарплата выше медианной. И чем это различие больше, тем выше социальное неравенство в обществе.
МЕРЫ ИЗМЕНЧИВОСТИ
Используются, когда нужно отразить степень разброса значений относительно меры центральной тенденции.
Состав:
1. Размах — разность между максимальным и минимальным значениями.
2. Дисперсия — сумма квадратов отклонений, деленная на их количество. Отклонение — это разность между средним арифметическим и конкретным значением. Дисперсии для генеральной совокупности и для выборки вычисляются по разным формулам.
3. Стандартное отклонение — корень из дисперсии.
Пример: предположим, вы владеете заводом, который выпускает гвозди. Для любого массового производства необходимо, чтобы изделия полностью соответствовали некоторому стандарту. Например — длина ваших гвоздей должна быть ровно 10 см. Однако на практике всегда существуют некоторые отклонения от этого стандарта (например 10,2 или 9,7 см). Меры изменчивости позволяют оценить величину этих отклонений. Если стандартное отклонение длины превышает некоторое критическое значение, то ваша продукция не соответствует стандарту, а следовательно — не является качественной.
МЕРЫ РАЗЛИЧИЙ ДЛЯ НЕСВЯЗАННЫХ ВЫБОРОК
Позволяют определить различия между двумя несвязанными выборками. Наличие значимых различий по определенному признаку позволяет с некоторой уверенностью говорить о том, что генеральные совокупности также различаются. Эти методы делятся на параметрические и непараметрические. Первые желательно использовать только тогда, когда ваши данные удовлетворяют следующим требованиям.
1. Данные представлены в метрической шкале. Иными словами, признаки должны быть представлены в определенных единицах измерения (см, кг, сек. и т. д.)
2. Большое число наблюдений (от 30, но лучше более 100).
3. Распределение значений признаков приблизительно соответствует нормальному.
4. Отсутствуют выбросы (значения, на порядок отличающиеся от среднего).
Непараметрические меры различий работают и без этих допущений. Наиболее часто используемые меры различий представлены в таблице.