Читать «Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания» онлайн - страница 14

Пол Хэлперн

Как возникает интерес к математике длиною в жизнь? Иногда просто благодаря элегантным чертежам и логичным доказательствам в учебнике геометрии.

Странные параллели

В 1891 году во время обучения в Луитпольдовской гимназии в возрасте 12 лет у Эйнштейна появился учебник по геометрии. Для него это было чудо, сопоставимое с компасом, которое привносило уютный порядок в ежедневную суету. Позже он называл этот учебник «священным писанием». Доказательства, основанные на четких, неоспоримых утверждениях, показывали, что за грохотом конных трамваев, неуклюжими тележками с едой и праздничным гвалтом выпивох Мюнхена скрывалась тихая незыблемая истина. «Эта ясность и точность произвели неописуемое впечатление на меня», — вспоминал он.

Некоторые из приведенных в учебнике утверждений казались ему очевидными. Он уже знал теорему Пифагора для прямоугольных треугольников: сумма квадратов длин двух перпендикулярных сторон (катетов) равна квадрату длины третьей стороны (гипотенузы). В учебнике говорилось, что если изменить один из острых углов (тех, что меньше 90 градусов), то длины сторон тоже должны измениться. Это казалось ему очевидным и без доказательства.

Однако другие геометрические утверждения были не столь прозрачны. Эйнштейну нравилось, как методично в учебнике доказывались теоремы, которые не были очевидными, но оказывались верными. Например, утверждение, что все высоты треугольника (отрезки, проведенные из вершин треугольника перпендикулярно его сторонам) должны пересечься одной в точке. Его не волновало, что доказательства в учебнике были основаны в конечном итоге на недоказуемых аксиомах и постулатах. Он был готов смириться с несколькими безусловными аксиомами ради награды в виде множества доказанных теорем.

Геометрия на плоскости (планиметрия), описанная в учебнике, уходит своими корнями более чем на две тысячи лет назад к работам древнегреческого математика Евклида. Его «Начала» структурировали геометрическое знание в десятках теорем и их следствий, которые последовательно выводились всего из пяти аксиом и пяти постулатов. Все аксиомы и постулаты представляют собой утверждения; принимаемые без доказательства. К примеру: «часть меньше целого» или «равные одному и тому же равны и между собой». Однако пятый постулат; касающийся углов; не был таким очевидным.

«Если прямая; пересекающая две прямые; образует внутренние односторонние углы; меньшие двух прямых углов; тс»; продолженные неограниченно; эти две прямые встретятся с той стороны; где углы меньше двух прямых». Другими словами; нарисуйте три прямые так; чтобы две из них пересекали третью и чтобы обращенные Друг к другу углы были меньше 90°. Если продлить прямые на достаточное расстояние; то в конце концов они должны пересечься и образовать треугольник. То есть если один угол 89° и второй тоже 89° то третий угол; под которым эти прямые пересекутся; образовав очень вытянутый треугольник; составит 2°.