Читать «Истину можно вычислить. Хронология глазами математики.» онлайн - страница 25

Анатолий Тимофеевич Фоменко

[ai — |ai — bi| — h(ai), аi + |аi — bi| + h(ai)].

Ясно, что параллелепипед P'(а, b) целиком лежит внутри большого параллелепипеда P(а, b), см. 20. Диагональю этого большого параллелепипеда является вектор а — b + h(а), где вектор h(а) выглядит так:

h(а) = (h(а1), …, h(ak)).

Его можно назвать ВЕКТОРОМ ОШИБОК ЛЕТОПИСЦЕВ.

Итак, мы смоделировали все три основные ошибки, делавшиеся летописцами при подсчете ими длительностей правлений царей. В качестве окончательного коэффициента с(а, b), измеряющего близость или удаленность друг от друга двух династий а и b, мы возьмем следующее число:

Ясно, что число с(а, b) является интегралом функции плотности z(x) по параллелепипеду P(а, b). На рис. 22 число с(а, b) условно изображается объемом призмы, имеющей в качестве основания параллелепипед P(а, b) и ограниченной сверху графиком функции z. Число с(а, b) можно, при желании, интерпретировать как вероятность того, что случайный «династический вектор», распределенный в пространстве Rk с функцией плотности z, оказался на расстоянии от точки а, не превышающем расстояния между точками а и b, с учетом ошибки h(а). Другими словами, случайный «династический» вектор, распределенный с функцией плотности, попал в окрестность P(а, b) точки а, имеющую «радиус» а — b + h(а).

Рис. 22. Представление коэффициента с(а, b) в биде объема «примы», то есть интеграла от функции z(x) по параллелепипеду Р(а, b).

Из предыдущего видно, что роль династий а и b при подсчете коэффициента с(а, b) неодинакова. Династия а была помещена в центр параллелепипеда P(а, b), а династия b определяла его диагональ. Конечно, можно было «уравнять в правах» династии а и b, поступив по аналогии с предыдущим коэффициентом p(X, Y). То есть можно поменять клестами династии а и b, вычислить коэффициент с(b, а), а затем взять среднее арифметическое чисел с(а, b) и с(b, а). Мы этого не делали по двум причинам. Во-первых, показали конкретные эксперименты, замена коэффициента с(а, b) на его «симметризацию» фактически не меняет получающихся результатов. Во-вторых, в некоторых случаях династии a и b действительно могут быть неравноправными в том смысле, что одна из них может быть оригиналом, а вторая — всего лишь ее дубликатом, фантомным отражением. В этом случае естественно помещать в центр параллелепипеда династию а, претендующую на роль оригинала, а «фантомное отражение» b рассматривать как «возмущение» династии а. Возникающие различия между коэффициентами с(а, b) и с(b, а) хотя и невелики, но могут послужить полезным материалом для дальнейших, более тонких исследований, которых мы пока не проводили.

2.3. Уточнение модели и вычислительный эксперимент

Сформулированный выше принцип малых искажений проверялся на основе коэффициента с(а, b).

1) Для проверки были использованы хронологические таблицы Ж. Блера [76], содержащие практически все основные хронологические данные, в скалигеровской версии, из истории Европы, Средиземноморья, Ближнего Востока, Египта, Азии от якобы 4000 года до н. э. до 1800 года н. э. Эти данные были затем дополнены списками правителей и их правлений, взятых нами из других источников и монографий, как средневековых, так и современных. Упомянем здесь, например, следующие книги: Ш. Бемон, Г. Моно [64], Э. Бикерман [72], Г. Бругш [99], А.А. Васильев [120], Ф. Грегоровиус [195], [196], Д. Эссад [240], Ш. Диль [247], Кольрауш [415], С.Г. Лозинский [492], Б. Низе [579], В.С. Сергеев [766], [767], Chronologie egipticnnc [1069], F.K. Ginzel [1155], LIdeler [1205], L’art de verifier les dates faites historiques [1236], T. Mommsen [1275], Isaac Newton [1298], D. Petavius [1337], I. Scaliger [1387].