Читать «Глазами физика. От края радуги к границе времени» онлайн - страница 206

Уолтер Левин

Студенты часто пишут мне много лет спустя, давно забыв детали уравнений Максвелла, что помнят тот день нарциссов, которыми я отметил их переход к новому способу восприятия мира. С моей точки зрения, это и есть преподавание на самом высоком уровне. Для меня гораздо важнее, что студенты помнят красоту того, что они тогда увидели, чем то, смогут ли они через пару лет точно воспроизвести написанное профессором на доске. Важно не то, что вы рассказываете, а то, как вы это делаете!

Моя цель – заставить студентов полюбить физику и сделать так, чтобы они стали смотреть на мир по-другому – на всю оставшуюся жизнь! Я хочу расширять их кругозор, чтобы побудить их задавать вопросы, которые они никогда не задали бы ранее. Моя задача – разблокировать мир физики таким образом, что он соединился с реальным интересом студентов к окружающему миру. Вот почему я всегда стараюсь показать им лес, а не заставляю лазить вверх и вниз по каждому дереву. То же самое я пытался сделать и для вас в этой книге. И искренне надеюсь, что у меня получилось и вам понравилось наше путешествие в мир физики.

Приложение I

Бедренная кость млекопитающего

Логично было бы предположить, что масса млекопитающего пропорциональна его объему. Сравним, например, щенка с матерым псом в четыре раза большего размера. Предположим, что все линейные размеры взрослой собаки в четыре раза больше размеров щенка: высота и длина тела, длина и толщина лап, объем головы – в общем, все. Если это так, то объем (и, следовательно, масса) взрослой собаки приблизительно в 64 раза больше объема щенка.

Для того чтобы все яснее представить, возьмем параллелепипед со сторонами a, b и c. Его объем будет равен a × b × c. Если увеличить все его стороны в четыре раза, его объем составит 4a × 4b × 4с, то есть 64abc. Выражаясь более математическим языком, можно сказать, что объем (и, следовательно, масса) млекопитающего пропорционален его размеру в кубе. Если большая собака в четыре раза больше щенка, то ее объем должен быть в четыре в кубе (4³) раз больше, то есть в 64 раза. Таким образом, обозначив длину бедренной кости l, при сравнении млекопитающих разного размера получаем, что их масса должна быть примерно пропорциональна l в кубе (l³).

Ну хорошо, с массой разобрались. Далее, прочность бедренной кости млекопитающего, поддерживающей весь его вес, должна быть пропорциональна ее толщине, не так ли? Более толстая кость способна поддерживать больший вес – это интуитивный вывод. Если перевести данную идею на язык математики, то прочность бедренной кости должна быть пропорциональна площади ее поперечного сечения. Данное сечение, грубо говоря, представляет собой круг, а мы знаем, что площадь круга равна πr², где r – радиус круга. Таким образом, если d диаметр круга, площадь пропорциональна d².

Обозначим толщину бедренной кости буквой d (от слова диаметр). Тогда, следуя идее Галилео, масса млекопитающего будет пропорциональна d² (чтобы кости могли выдержать его вес), но она также пропорциональна l³ (это всегда так, независимо от идей Галилея). Стало быть, если идея Галилея верна, d² должно быть пропорционально l³, что равнозначно заявлению о том, что d пропорционально l³/2.