Читать «Путешествие по Карликании и Аль-Джебре» онлайн - страница 20
Владимир Артурович Левшин
2, 3, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37, 41, 43, 47, 49, 53…
Видите, всё меньше и меньше остаётся составных чисел в решете.
А дальше выбросим все числа, которые делятся на пять, потом те, что делятся на семь… Так постепенно из ряда натуральных чисел будут выбывать составные числа и оставаться простые, то есть те, которые делятся только сами на себя и на единицу.
Теперь мы уже знаем очень много простых чисел.
Вот первые из них:
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97…
Эти-то числа, как видите, и стоят на левой стороне аллеи.
— Очень просто! — заявил Сева. — Я дома тоже устрою такую аллею и выпишу все-все простые числа…
— Не торопитесь, — перебила его Четвёрка. — Это не так легко: выписать все простые числа. Ведь чем больше число, тем сложнее определить — простое оно или составное. Если бы мы знали, в каком порядке они следуют друг за другом, это было бы замечательно! К сожалению, никто ещё до сих пор этот порядок установить не сумел. То простые числа стоят совсем рядом, их тогда называют близнецами, то между двумя ближайшими простыми числами образуется огромное расстояние, и оно сплошь заполнено составными числами. Люди очень далеко прошли по этой аллее, они знают множество простых чисел, и всё-таки не все!
— А может быть, дальше и нет ни одного простого числа? — усомнился Сева.
— Нет! Не может быть! — ответила Четвёрка. — Уже давным-давно один великий учёный, тоже грек, Эвклид, предшественник Эратосфена, доказал, что конца простым числам нет. Вот почему так озабочен наш добрый карликан! У него очень много дела. Только вчера в конце аллеи он увидел огромное простое число, а сегодня за этим числом стоит ещё большее: 170 141 183 460 469 231 731 687 303 715 884 105 727. А завтра, может, появится новое, если люди его вычислят. И так без конца. Есть отчего потерять голову. И говорить об этом тоже можно без конца… Давайте-ка лучше займёмся поисками бедного Нулика, — закончила свой рассказ Четвёрка.
— А мы как раз идём для этого в Рим, — сказал Сева.
— За Нуликом в Рим?! — удивилась Четвёрка. — Его там не может быть!
— А мы всё-таки пойдём! — упорствовал Сева.
— Как вам будет угодно! — согласилась наша проводница. — Желание гостя для нас закон.
…И совершенство
Мы свернули на маленькую улочку.
— Какая прелестная улица! — захлопала в ладоши Таня.
— Но это же улица Совершенства, — пояснила Четвёрка. — Здесь живут очень немногие числа. Но зато все они совершенные. Их так и зовут-совершенные числа. В отличие от простых, они-то уж обязательно делятся на всякие другие числа.
— Значит, они составные? — спросила Таня.
— Безусловно, составные. Но особенные. Совершенные числа равны сумме тех чисел, на которые делятся. Разумеется, кроме самих себя. Возьмём совершенное число — 6. На какие числа делится это число? На 1, на 2 и на 3. Теперь сложим эти три числа:
1+2+3=6.
— Изумительно! — воскликнула Таня.
— Или вот другое совершенное число — 28, — продолжала Четвёрка. — Помните, какие у него младшие делители?