Читать «Математика. Считаем уверенно» онлайн - страница 37

Александра Евгеньевна Соболева

Задания:

– докажи, что число 759 является трехзначным;

– докажи, что число 12 является четным;

– докажи, что число 27 является нечетным;

– докажи, что число 35 не делится на 2;

– докажи, что число 74 делится на 2;

– докажи, что число 44 не делится на 3;

– докажи, что число 93 делится на 3;

– докажи, что число 87 не делится на 5;

– докажи, что число 65 делится на 5;

– докажи, что геометрическая фигура с тремя сторонами является треугольником;

– докажи, что геометрическая фигура с четырьмя углами является квадратом.

Вы можете сами составлять задания по аналогии, а также включать материал из учебников по математике, актуальный для возраста игроков.

Спраутс (Побеги)

Игра изобретена математиком Дж. Конуэй, развивает прогностическую функцию мышления и функцию контроля.

Материалы: игровое поле с 16 точками, расположенными квадратом: по 4 с каждой стороны (как на рис. 19), два цветных карандаша или фломастера.

Количество играющих: 2 человека.

Возраст играющих: от 8 лет и старше.

Правила игры: два игрока ходят по очереди.

Рис. 19. Игровое поле для игры «Спраутс»

Правила ходов:

– за один ход можно соединить две точки прямой или кривой линией, на которой ставится новая точка (цветом, выбранным для каждого игрока);

– линия может соединять как соседние точки, так и точки, расположенные далеко друг от друга;

– линии не могут пересекаться;

– в точке может сходиться не более трех линий;

– играют только точки, изначально намеченные на игральном поле (точки, которые будут ставить игроки на линиях, соединять нельзя);

– выигрывает тот, кто сделает последний ход.

Заключение

Итак, кто говорил, что ваши дети не способны к математике?

Думаем, что после того, как поиграли с ними во все описанные нами игры, никто такого уже не скажет. Мы занимались именно развитием математического мышления, а не самой математикой.

Теперь вы научили детей мыслить, и мыслить с удовольствием, потому что именно любовь к предмету и способности к нему дает игровая форма обучения.

Все положительные изменения в успеваемости детей объясняются полимодальностью воздействия игр. В ходе занятий повысились произвольное внимание и контроль, восприятие, внимание и память, улучшилась мелкая моторика рук, сформировались зрительно-пространственные функции и логическое мышление, что не только позитивно повлияло на преодоление разных механизмов математического мышления, но должно было положительно повлиять и на успеваемость по всем предметам, поведение и желание учиться.

Поэтому если вашему ребенку не дается один из школьных предметов, необходимо, прежде всего выявить причины, мешающие ему его освоить, и убедить ребенка, что трудности, стоящие на пути, вполне преодолимы, а также заинтересовать ребенка и пробудить в нем желание «считать и решать».

В заключение хотелось бы вам процитировать рекомендацию, которую всегда дает родителям, психологам и учителям научный руководитель нашего Центра, профессор Жанна Марковна Глозман. На вопрос «Что делать с ребенком?» она всегда говорит: «Хвалите!». А когда ей объясняют, что хвалить не за что, она лукаво произносит: «Ищите!». И не было случая, чтобы этот уникальный рецепт не принес результата!