Читать «Занимательная электроника» онлайн - страница 59

Юрий Всеволодович Ревич

Нужно отметить два момента: во-первых, процесс разряда по рис. 5.7, а бесконечен (полностью конденсатор не разрядится никогда, если сопротивление нагрузки не равно нулю), но практически это не имеет значения, потому что напряжение на конденсаторе становится исчезающе малым очень скоро. Во-вторых, из формул на рис. 5.7 следует очень интересный вывод: если сопротивление R равно нулю, то время процесса разряда или заряда становится бесконечно малым, а ток через нагрузку — по закону Ома — бесконечно большим!

Обратимся снова к рис. 5.6 — именно нечто подобное должно происходить при переключении К в положение заряда емкости от батареи. Естественно, в реальной жизни ни о каких бесконечных токах речи не идет — для этого батарея должна иметь нулевое выходное сопротивление, т. е. бесконечно большую мощность (подумайте, почему эти утверждения равносильны?). Да и проводники должны обладать нулевым сопротивлением. Поэтому на практике процесс заряда от источника (и разряда при коротком замыкании пластин) происходит за малое, но конечное время, а ток, хоть и не бесконечно велик, но все же может достигать очень больших значений. Потому-то источники питания с отключением по превышению максимально допустимого тока (см. главу 2) могут выключаться при работе на нагрузку с конденсатором большой емкости, установленном параллельно источнику питания (мы дальше увидим, что такой конденсатор устанавливают практически всегда), хотя ток в рабочем режиме может быть и невелик.

Один из методов борьбы с этой напастью — включение последовательно с нагрузкой небольшого резистора, ограничивающего ток в начальный момент времени.

Как рассчитать необходимый номинал? Для этого нужно представить, что конденсатор при заряде в первый момент времени ведет себя так, как будто цепь в месте его установки замкнута накоротко (это очень точное представление!). Тогда нужный номинал резистора определится просто по закону Ома, в который подставляется предельно допустимый ток источника и его напряжение.

Интуитивно кажется, что должна существовать какая-то характеристика цепи из конденсатора и сопротивления, которая позволяла бы описать процесс заряда-разряда во времени — независимо от напряжения на конденсаторе. Такая характеристика рассчитывается по формуле Т = RC. Приведением единиц мы бы здесь занимались довольно долго, потому поверьте, что размерность произведения RC есть именно время в секундах. Эта величина, которая носит название постоянной времени RC-цепи, физически означает время, за которое напряжение на конденсаторе при разряде его через резистор (рис. 5.7, а) снижается на величину 0,63 от начального (т. е. до величины, равной доле 1/e от первоначального U0, что и составляет примерно 37 %). За следующий отрезок времени, равный , напряжение снизится еще на столько же от оставшегося и т. д. — в полном соответствии с законом экспоненты.

Аналогично при заряде конденсатора (рис. 5.7, б), постоянная времени Т означает время, за которое напряжение увеличится до доли (1–1/e) от конечного значения U0, т. е. до 63 % от С/о. Дальше мы увидим, что произведение RC играет огромную роль при расчетах различных схем.