Читать «Занимательная электроника» онлайн - страница 58

Юрий Всеволодович Ревич

Интересно, что при фиксированном заряде (если цепь нагрузки конденсатора отсутствует) можно изменить напряжение на нем, меняя емкость. Например, при раздвижении пластин плоского конденсатора емкость его падает (т. к. расстояние d между пластинами увеличивается), потому для сохранения заряда напряжение должно увеличиться — что и происходит на деле, когда в эффектном школьном опыте между раздвигаемыми пластинами конденсатора проскакивает искра при превышении предельно допустимого напряжения пробоя для воздуха.

На рис. 5.6 изображено подключение конденсатора С к нагрузке R. Первоначально переключатель К ставится в нижнее по схеме положение, и конденсатор заряжается до напряжения батареи Б. При переводе переключателя в верхнее положение конденсатор начинает разряжаться через сопротивление R, и напряжение на нем снижается. Насколько быстро происходит падение напряжения при подключении нагрузки? Можно предположить, что чем больше емкость конденсатора и сопротивление резистора нагрузки, тем медленнее происходит падение напряжения. Правда ли это?

Рис. 5.6. Подключение конденсатора к нагрузке:

К — переключатель, Б — батарея, С — конденсатор; R — сопротивление нагрузки

Это легко попробовать оценить через размерности связанных между собой электрических величин: тока, емкости и напряжения. В самом деле, в определение тока входит и время (напомним, что ток есть заряд, протекающий за единицу времени), и это время должно быть тем самым временем, которое нас интересует. Если вспомнить, что размерность емкости есть кулоны на вольт, то искомое время можно попробовать описать формулой: t = CU/I, где С — емкость, а U и I — ток и напряжение соответственно (проверьте размерность!). Для случая рис. 5.6 эта формула справедлива на малых отрезках времени, пока ток не падает значительно из-за уменьшения напряжения на нагрузке. Отметим, что формула эта полностью справедлива и на больших отрезках времени, если ток разряда — или заряда — конденсатора стабилизировать, что означает подключение его к источнику втекающего (при разряде) или вытекающего (при заряде) тока.

При обычной фиксированной нагрузке с сопротивлением R так, конечно, не происходит — напряжение на конденсаторе падает по мере истощения заряда, значит, ток через нагрузку также пропорционально снижается — в полном соответствии с законом Ома (помните, мы говорили, что простой резистор есть плохой источник тока?). Опять приходится брать интегралы, потому мы приведем только конечный результат: формула для расчета процесса снижения напряжения на емкости при разряде ее через резистор и соответствующий график показаны на рис. 5.7, а. А на рис. 5.7, б показан аналогичный процесс, который происходит при заряде емкости через резистор.

Рис. 5.7. Процессы при разряде и заряде конденсатора:

С — емкость; R — сопротивление нагрузки; t — время; е — основание натуральных алгоритмов (2,718282)