Читать «Физика для "чайников"» онлайн - страница 6
Андрей Задумавшийся
Это всё было прямолинейное движение. То есть когда беззаботно летим по шоссе или проспекту - траектория наша является прямой линией, и всё хорошо. Но вот теперь мы въехали в город и едем по круглой площади. Это уже криволинейное движение - траектория кривая. Если начать умничать, то перемещение здесь получится меньше пути, скорость будет менять своё направление и, более того, направления скорости и ускорения не будут совпадать. То есть если тут что-то надо будет считать - ребята, тушите свет. Если в общем случае...
Но здесь, опять-таки, есть случаи частные. Самый распространённый здесь - равномерное движение по окружности. При нём траектория - окружность, а скорость по модулю не меняется. Всего два уточнения, но от них становится легче. Почему?
Потому, что при этом гораздо проще посчитать путь - это просто длина окружности. Раз. Второе - гораздо проще посмотреть, как расположено ускорение. Тут оно называется заумным словом "центростремительное" - типа, когда едешь по кругу, невольно стремишься к центру. Оно всегда перпендикулярно скорости. Повёрнуто под 90 градусов по отношению к ней, то бишь. И направлено к центру (а скорость, как догадаются умники, - по касательной).
То есть, по-русски. Когда ты едешь по кругу, то получается, что как будто всё время стремишься к центру - каждый момент поворачиваешь на какой-то маленький уголок, и этот поворот заставляет тебя ехать не дальше прямо, а криво, постоянно держать одно и то же расстояние от центра - тогда и получается окружность. Это самое центростремительное ускорение и показывает, насколько сильно меняется направление твоего движения (по-умному - направление вектора скорости). А считается оно, как квадрат скорости, делённый на радиус окружности. Опять бредовая формула? А это потому, что скорость берём линейную (метры в секунду). Если же мысленно смотреть из центра и крутить головой, смотря на машину, то за какое-то время голова повернётся на какой-то угол. Скорость, с которой она повернётся, будет угловой (радианы в секунду). Вот если через такую скорость считать, то будет квадрат угловой скорости, умноженной на радиус. Опять не угодить? Почему квадрат? Да пёс его знает, если честно. Одно из лучших оправданий физиков непонятным формулам - размерность. Если размерность формулы равна размерности того, что хотим получить, то в 75% случаев формула правильная. Примерно такая же бодяга и здесь: если взять обычную скорость, это получится: метры в квадрате, делённые на секунду в квадрате, делить на метры. Итого получится - метр на секунду в квадрате - размерность ускорения. Не придерёшься. Если угловую - то тут похитрее: радианы в подсчёте размерности считаются безразмерными. (Их вводили в том числе и поэтому. Не просто так же брать какую-то непонятную цифирь в 57.3 градуса с потолка.) Поэтому здесь выходит так: метры умножить на обратную секунду в квадрате (1/(c^2)). То есть - опять м/(с^2).