Читать «Том 27. Поэзия чисел. Прекрасное и математика» онлайн - страница 10
Антонио Дуран
рычаг будет находиться в равновесии.
Следовательно, при рассмотрении параболы как совокупности отрезков Архимеду удалось сбалансировать на разных концах рычага параболу (ее центр тяжести совпадает с точкой
Согласно правилу рычага, соотношение площадей параболы и треугольника обратно пропорционально отношению плеч рычага, на которых располагаются парабола и треугольник. Это соотношение равно одной третьей, что объясняется на следующей странице. Следовательно, площадь сегмента параболы
* * *
ПРОПОРЦИЯ И РАВНОВЕСИЕ
Рассмотрим подробнее, почему соотношение плеч рычага, на котором уравновешены треугольник и парабола, равно одной третьей. В силу особенностей построения левое плечо рычага EiF равно отрезку FC, а правое плечо рычага — это отрезок FG. Центр тяжести треугольника — это точка пересечения его медиан (прямых, соединяющих вершины треугольника с центрами противоположных сторон). Центр тяжести делит медианы в соотношении 2:1, считая от вершины. Так как FC — медиана треугольника (этот отрезок соединяет вершину С и середину стороны В), длина отрезка FG будет равна одной трети длины отрезка FC.
* * *
Математика: результат творчества или открытия?
Рассуждения Архимеда, позволившие ему вычислить квадратуру параболы, помогут нам ответить на непростой вопрос: можно ли назвать ученого творцом? Толчком к этой полемике стали размышления об эстетике.
Большинство, возможно, полагает, что термин «творец» неприменим к ученым в целом и математикам в частности. К примеру, Фернандо Саватер в «Вопросах жизни» писал: «Творец — тот, кто создает что-то, что без него никогда не появилось бы на свет, тот, кто привносит в мир что-то, что без него никогда не могло бы существовать именно в таком виде, а не в другом, более или менее похожем». Так, Александр Флеминг не «изобрел» пенициллин, а открыл его: «Если бы он не открыл пенициллин, рано или поздно другой мудрец открыл бы лечебные свойства этого чудесного грибка. Напротив, если бы Моцарт или Сервантес умерли бы в младенчестве, никто бы не написал «Волшебную флейту» и не рассказал бы историю Дон Кихота». С философом Саватером согласны и другие ученые, например лауреат Нобелевской премии по медицине Франсуа Жакоб.
Любой научный факт имеет два аспекта. Первый аспект — это само открытие, будь то теорема, универсальный закон, галактика или химический элемент, второй — форма, в которой было совершено это открытие. Если мы используем термин «открытие», то уместно было бы назвать ученых «первооткрывателями». Однако порой случается — возможно, редко, но все же случается, — что ученого уместно назвать творцом, так как он совершил или представил свое открытие совершенно уникальным способом.
Так, можно сказать, что Архимед не был творцом соотношения площадей сегмента параболы и треугольника — рано или поздно это соотношение обнаружил бы и другой ученый. Однако Архимед не просто определил соотношение между площадями фигур, а сделал это определенным образом. И именно этот конкретный способ уравновешивания площадей посредством рычага можно назвать результатом творчества. Как мы не можем представить картину «Менины» без Веласкеса, так и эти геометрические рассуждения нельзя представить без Архимеда. Можно сказать, что Архимед открыл формулу квадратуры параболы, но его исполненный эстетики метод разделения фигур на отрезки с их уравновешиванием — результат творчества в полном смысле этого слова, о котором говорил Саватер: «без него [это] никогда не могло бы существовать именно в таком виде, а не в другом, более или менее похожем».