Читать «Том 38. Измерение мира. Календари, меры длины и математика» онлайн - страница 8

Иоланда Гевара

* * *

ВЕЩЕСТВЕННЫЕ ЧИСЛА

Вещественные числа (обозначаются ) — это множество чисел, включающее как рациональные числа (положительные, отрицательные дроби и ноль; обозначаются ), так и иррациональные (алгебраические и трансцендентные), которые имеют бесконечно много непериодических знаков после запятой и которые нельзя представить в виде дроби, как, например, √2, π и так далее.

Примеры вещественных чисел ().

Начиная от натуральных чисел () — 1, 2, 3, … — которые мы используем при счете, — и заканчивая вещественными числами (), которые нужны для измерений в математических моделях, последовательное расширение множеств чисел можно объяснить необходимостью в числах, которые будут выражать результаты определенных операций:

Целые числа () позволяют выразить результат 3 – 4 = -1, рациональные () — (3/4) = 0,75, вещественные () — √2, комплексные () — √-4.

* * *

Точные измерения возможны только в математических моделях. Что и как измеряют математики? В этой науке измерения всегда были тесно связаны с геометрией — разделом, который изучает свойства фигур и тел на плоскости и в пространстве. Интересно отметить, что истоки геометрии восходят к решению конкретных задач, связанных с измерениями.

В элементарной геометрии приводится общее описание объектов и фигур, носящее качественный характер. Если мы хотим получить более конкретное и точное описание, требуется применить количественный подход — и здесь необходимы измерения, а для выражения результатов измерений нужны цифры. Отрезки имеют длину, участки плоскости — площадь, тела в пространстве — объем.

В математических моделях результаты измерений непрерывны, и для того чтобы выразить их, множества рациональных чисел недостаточно — его нужно расширить и включить в него все числа, которые покрывают числовую прямую, то есть вещественные числа. В повседневной жизни мы часто измеряем длину. В математической модели при измерении длины мы откладываем рассматриваемый отрезок вдоль прямой линии и устанавливаем соответствие между точками прямой и обозначающими их вещественными числами.

При этом вещественные числа требуются для измерений даже в, казалось бы, простых случаях. Пифагорейцы, пытаясь найти ответ на вопрос, чему равна длина диагонали квадрата с длиной стороны, равной единице, обнаружили, что существуют несоизмеримые величины. По теореме Пифагора, искомая длина диагонали равна √2, однако результат этой операции нельзя выразить рациональным числом () — для этого потребуются иррациональные числа, и мы вынуждены будем пересечь границу множества .

Длина диагонали квадрата со стороной длиной 1 равна √2, так как по теореме Пифагора √(12 + 12) = √2.

Древние греки, использовавшие при расчетах только рациональные числа, столкнулись со следующей проблемой: как измерить длину диагонали квадрата, если не существует числа, выражающего результат измерения? Решение проблемы приводит к идее о соизмеримых и несоизмеримых величинах: первые можно выразить как величину, кратную или дробную исходной единице измерения, вторые, напротив, нельзя выразить с помощью дробей или пропорций, как в нашем примере с диагональю квадрата.