Читать «Почему наука не отрицает существование Бога? О науке, хаосе и пределах человеческого знания» онлайн - страница 111
Амир Д. Ацель
Эта история демонстрирует невероятное свойство бесконечных множеств: вы ставите во взаимно однозначное соответствие все номера, начиная со второго, со всеми номерами, начиная с первого, показав, что в обоих множествах одинаковое количество чисел (это бесконечность низшего порядка – множество целых и рациональных чисел).
Кантор обозначил свои порядки бесконечности, мощности бесконечных множеств, буквой
Однако в случае гипотезы континуума математический аппарат не работает: мы не в состоянии доподлинно понять истинные уровни существующей бесконечности и то, в каком отношении находятся эти уровни друг с другом. Возможно, если не работает математический анализ, то стоит прибегнуть к метафизическим рассуждениям. Именно так и поступил Кантор. Всю свою жизнь, преодолевая трудности и невзгоды, он не жалел усилий, чтобы полностью понять бесконечность, и поэтому обратился к духовности, услышав Бога, говорившего ему, что гипотеза континуума верна. Для Кантора Бог был кульминацией всех
Видимо, всякий раз, когда Кантор проводил слишком много времени, пытаясь доказать гипотезу континуума, он в конце концов впадал в депрессию. Блестящий математик, он чувствовал, что
Измученный болезнями Кантор чувствовал, что с помощью математики, ее логических законов и строгого аппарата сможет ответить на вопросы о бесконечности и природе пространства. До этого момента такой подход открыл перед ним настоящий «рай» неожиданных и великих математических открытий. Давид Гильберт говорил о них так: «Никто не сможет теперь изгнать нас из рая, открытого Кантором». На международном конгрессе математиков, состоявшемся в 1900 году, Гильберт представил гипотезу континуума Кантора, как первую из десяти проблем математики (позднее их стало 23), которые, как надеялся Гильберт, будут решены в XX веке. Тем не менее гипотеза континуума по сей день остается недоказанной: мы до сих пор не знаем, из чего состоит пространство и какова его структура в понятиях бесконечных множеств.