Читать «Возвращение времени. От античной космогонии к космологии будущего» онлайн - страница 183

Ли Смолин

138

Horava, Petr Quantum Gravity at a Lifshitz Point // arXiv:0901.3775v2 [hep-th] (2009).

139

Banks, T., et al. M Theory as a Matrix Model: A Conjecture // arXiv: hep-th/9610043v3 (1997).

140

Эксперты могут сказать, что объем и площадь не являются физическими характеристиками, поскольку они не инвариантны относительно диффеоморфизма пространства-времени. Но бывают случаи, когда они выступают физическими характеристиками – либо потому, что являются свойствами границ, на которых зафиксирован диффеоморфизм, либо потому, что зафиксирована шкала и физическое описание эволюции системы дается при помощи гамильтониана.

141

См.: Barrau, Aurelien, et al. Probing Loop Quantum Gravity with Evaporating Black Holes // arXiv:1109.4239v2 (2011).

142

В какое время? Любое! В теории петлевой квантовой гравитации время является произвольным, так как оно возникает в результате квантования ОТО.

143

В оригинальном подходе к петлевой квантовой гравитации граф рассматривался в простейшем трехмерном пространстве. Все, что могло быть измерено (длина, площадь, объем), не было зафиксировано. Зато были зафиксированы размерность пространства, его связанность или топология. (Под топологией мы подразумеваем то, как пространство связанно. Топология не изменяется, когда форма претерпевает изменения без разрывов.) Топологию легче всего объяснить на примерах и визуализировать в двух измерениях. Рассмотрим замкнутую двумерную поверхность. Это может быть сфера или поверхность тора (бублика). Вы можете плавно деформировать сферу, но не можете плавно перевести сферу в тор. Другие топологии двумерных поверхностей могут напоминать пончики с многочисленными отверстиями. Как только мы зафиксируем топологию пространства, мы можем рассмотреть способы, с помощью которых граф может быть погружен в него. Например, ребра графа могут быть связаны узлом, заплетены или как-то иначе связаны друг с другом. Каждый из способов встраивания графа в пространство соответствует различным квантовым состояниям геометрии (хотя в большинстве современных работ по квантовой гравитации графы определяются без указания на эти способы).

144

См.: Han Muxin and Zhang Mingyi Asymptotics of Spinfoam Amplitude on Simplicial Manifold: Lorentzian Theory // arXiv:1109.0499v2 (2011); Magliaro, Elena, and Claudio Perini Emergence of Gravity from Spinfoams // arXiv:1108.2258v1 (2011); Bianchi, Eugenio, and Ding You Lorentzian Spinfoam Propagator // arXiv:1109.6538v2 [gr-qc] (2011); Barrett, John W., Dowdall, Richard J., Fairbairn, Winston J., Hellmann, Frank, and Roberto Pereira Lorentzian Spin Foam Amplitudes: Graphical Calculus and Asymptotics // arXiv:0907.2440; Conrady, Florian, and Laurent Freidel On the Semiclassical limit of 4d Spin Foam Models // arXiv:0809.2280v1 [gr-qc] (2008); Smolin, Lee General Relativity as the Equation of State of Spin Foam // arXiv:1205.5529v1 [grqc] (2012).