Читать «Скрытая реальность. Параллельные миры и глубинные законы космоса» онлайн - страница 20
Брайан Грин
Математики говорят, что бесконечный стол и экран компьютерной игры — это поверхности постоянной нулевой кривизны. Слово «нулевая» говорит о том, что и зеркальный стол, и зеркальный компьютерный экран отразят вас без искажений, а слово «постоянная», как и прежде, означает, что ваше отражение будет выглядеть одинаково вне зависимости от того, напротив какой точки поверхности вы встанете. Разница между этими двумя формами проявляется только в глобальной перспективе. Если вы отправитесь в поездку по бесконечному столу, сохраняя постоянное направление, вы не вернётесь домой никогда; на экране компьютерной игры вы можете объехать всю фигуру и вернуться в пункт отправления, ни разу не повернув руль.
Наконец, ломтик картофельных чипсов «Принглс», если его бесконечно продолжить во все стороны (это несколько труднее изобразить), даёт представление об ещё одной однородной фигуре, про которую математики говорят, что она имеет постоянную отрицательную кривизну. Это означает, что ваше отражение в любой точке зеркальной чипсины будет выглядеть сжатым внутрь.
К счастью, эти описания двумерных однородных фигур без усилий расширяются на интересующий нас случай трёхмерного космического пространства. Положительная, отрицательная или нулевая кривизна — однородное раздувание, однородное сжатие или отсутствие искажений — с тем же успехом характеризуют трёхмерные однородные формы. В действительности нам повезло дважды, поскольку хотя трёхмерные формы очень трудно изобразить (представляя себе форму, наше сознание помещает её в некое окружение — аэроплан в пространстве, планета в пространстве, — но когда дело доходит до пространства, нет никакого окружения, в котором содержалось бы само пространство), трёхмерные однородные формы являются столь точными математическими аналогами своих двумерных родственников, что мы ничего не потеряем, когда станем делать то же, что делает большинство физиков, — мысленно использовать двумерные примеры.
В приведённой ниже таблице я перечислил возможные варианты формы пространства, подчеркнув, что одни из них имеют конечную протяжённость (сфера, экран компьютерной игры), а другие — бесконечную (бесконечный стол и бесконечная чипсина). Таблица 2.1 не является полной. Существуют другие возможные формы, которые носят загадочные названия вроде бинарного тетраэдрального пространства и додекаэдрального пространства Пуанкаре, также имеющие однородную кривизну; я не включил их сюда, поскольку их сложнее наглядно изобразить с помощью повседневных предметов. Они могут быть построены, если подходящим образом нарезать и скомпоновать уже знакомые пространства из нашего списка, так что табл. 2.1 в действительности даёт вполне представительную выборку. Однако все эти подробности второстепенны для нашего ключевого вывода: требование однородности космоса, отражённое в формулировке космологического принципа, существенным образом ограничивает набор возможных форм вселенной. Одни из этих форм имеют бесконечную пространственную протяжённость, другие — нет.