Читать «История математики. От счетных палочек до бессчетных вселенных» онлайн - страница 6

Ричард Манкевич

В геометрии они знали процедуры, позволявшие найти площади плоских фигур. Многие задачи решались алгебраически. Иррациональные числа, дающие начало бесконечному разложению на десятичные дроби, изображались в цифровой форме путем усечения дробного шестидесятеричного разложения. Например, в десятичной системе счисления в выражении √5 = 2,236067… три точки показывают, что разложение на десятичную дробь продолжается неопределенно долго. Усечение ее до двух десятичных знаков приводит к значению 2,23, хотя значение 2,24 — более точное приближение. Иногда усеченное и наиболее точное приближения дают один и тот же результат, например при усечении до трех десятичных знаков в обоих случаях √5 = 2,236. Записей о каком-либо обсуждении предполагаемой бесконечной природы таких разложений не существует, но на одной табличке изображено очень хорошее приближение √2, которое в шестидесятеричной системе изображается как 1:24,51,10 и соответствует пяти десятичным позициям. Обоснования этого результата не дается, но метод, названный в честь Гирона, греческого математика первого века нашей эры, то есть примененный почти две тысячи лет спустя, приводит к точно такому же результату. Вавилоняне также вовсю использовали теорему Пифагора за тысячу лет до его рождения.

Математика древних вавилонян была сложной и применялась в практических целях — в бухгалтерских и финансовых расчетах, в определении весов и мер. Некоторые из проблем, которыми они занимались, показывают, что существовала также теоретическая традиция, плоды которой можно увидеть в вавилонской астрономии.

Для цивилизации, охватывающей приблизительно четыре тысячи лет, египтяне оставили удивительно мало свидетельств занятий математикой. Папирус — хрупкий материал, и то, что хоть какие-то древние папирусы сумели выжить, — просто чудо. Два главных источника информации известны как папирус Ринда и Московский папирус. Есть также несколько малозначимых документов и множество изображений на могилах и храмах, где можно увидеть коммерческие и административные задачи, решаемые с помощью математических навыков. Папирус Ринда был написан приблизительно в 1650-х годах до нашей эры писцом по имени Ахмес, который объясняет, что он копирует оригинал двухсотлетней давности. Во вступлении сказано, что этот текст — полное исследование всего сущего, прозрение относительно всего существующего, источник знаний обо всех непонятных тайнах. Нам это может показаться скорее преувеличением, но этот документ показывает, что искусство писцов было заповедником просвещенной элиты. В папирусе содержится 87 задач и их решения, он написан знаками повседневного жреческого письма, а не сложными иероглифическими символами, которые выбирались для декоративной письменности. Большинство задач — задачи на вычисления, например задача разделения нескольких ломтей хлеба между определенным числом людей. Есть также метод определения площади прямоугольного треугольника. Все решения проиллюстрированы конкретными примерами, не дается никаких явных общих формул. Московский папирус посвящен практически тем же самым вопросам, но включает также вычисление объема усеченной пирамиды, или усеченного конуса, а также, похоже, площади поверхности полусферы.