Читать «Эволюция Вселенной и происхождение жизни» онлайн - страница 215

Пекка Теерикор

Эти выводы можно понять, если экстраполировать в прошлое те процессы, которые мы видим сейчас. Звезды формируются из газовых облаков. Значит, в прошлом газа в галактиках было гораздо больше, чем звезд. В далеком прошлом галактики целиком должны были состоять из газа. Сегодня мы видим галактики убегающими друг от друга, следовательно, в прошлом молодые чисто газовые галактики должны были прижиматься друг к другу. А еще раньше этот газ до своего расширения должен был быть очень горячим. Когда-то в прошлом этот газ был таким плотным и горячим, что был совершенно непрозрачным. После окончания этой эпохи пространство стало прозрачным. Излучение, испущенное в тот переходный период, до сих пор должно скитаться по пространству, хотя оно уже сильно остыло из-за расширения Вселенной (рис. 24.1).

Рис. 24.1. Георгий Гамов (1904–1968), автор теории Большого взрыва. С течением времени пространство расширяется, а плотность и температура Вселенной уменьшаются. Рисунок Артура Чернина.

Рождение легких элементов в Большом взрыве.

Уже знакомая нам Сесилия Пейн-Гапошкина доказала, что основным веществом в звездах является водород, вторым по обилию — гелий, а на долю всех более тяжелых элементов приходится совсем немного (и в межзвездном газе сохраняется такая же пропорция). Как возникли эти элементы? Гамов стремился объяснить происхождение всех элементов в процессе Большого взрыва. В 1946 году он предположил, что вначале все вещество состояло из нейтронов. При столкновении двух нейтронов может образоваться ядро дейтерия, а далее при его столкновении с еще двумя нейтронами рождается ядро гелия. Гамов считал, что при соответствующих условиях этот процесс может продолжаться до тех пор, пока не возникнут ядра с массами до 250 атомных единиц. Вычисления показали, какая плотность и температура нужны для этого процесса. Альфер и Герман пришли к выводу, что в нашу эпоху остаточное излучение Большого взрыва должно быть похоже на излучение тела, имеющего температуру -268 °C, или 5 К.

Спустя несколько лет стало ясно, что элементы, следующие за гелием, не могут возникать путем захвата нейтрона, так как более сложные ядра при этом разрушаются, превращаясь в более легкие. Более того, наблюдаемое обилие элементов тяжелее гелия может меняться от звезды к звезде в сотню раз. Если бы тяжелые элементы родились с самого начала, то они должны были бы содержаться в одинаковой пропорции всюду во Вселенной, во всех ее звездах. Так что требуется найти другой «котел» для их производства.

В 1956 году Фред Хойл (рис. 24.2) со своим американским коллегой Уильямом Фаулером (1911–1995) и английскими астрономами Маргарет и Джеффри Бербиджами показали, что элементы тяжелее гелия совершенно естественно рождаются в ходе ядерных реакций в горячих недрах звезд. Они вычислили, какое количество каждого элемента образуется на разных стадиях звездной эволюции и какая его часть возвращается в межзвездные газовые облака. Мы уже обсуждали процессы внутри звезд и то, как химические элементы выбрасываются в межзвездное пространство при взрывах сверхновых (см. главу 19). Результат работы Хойла с коллегами оказался замечательным: в этом процессе химические элементы формируются именно в таком соотношении, какое наблюдается в природе.