Читать «Эволюция Вселенной и происхождение жизни» онлайн - страница 131

Пекка Теерикор

Другим отклонением от стандартной физики было требование Бора, чтобы электрон, двигаясь по разрешенной орбите, не излучал. Это противоречит теории электромагнитного излучения. Но Бор связал излучение с другим явлением — с изменением орбиты электрона. Каждая круговая орбита электрона обладает определенной энергией, которая тем больше, чем дальше от протона находится эта орбита. Электрон может перепрыгнуть с верхней (то есть более далекой) орбиты на нижнюю, излучив при этом фотон, энергия которого соответствует разности энергий этих двух орбит. И наоборот, электрон может захватить пролетающий мимо фотон с энергией, необходимой для его перехода на более высокую орбиту.

А поскольку разрешены орбиты только с определенной энергией, то между ними возможны только определенные разности энергий и соответствующие им фотоны. Вспомните ступеньки лестницы: вы не сможете стоять на или перепрыгнуть через половину ступени, вы можете шагать только через целое число ступеней. Так как вели-чина энергии фотона связана с его длиной волны, то лишь определенные длины волн могут присутствовать в излучении атома воден рода. Формула Бальмера связывает длины волн с целыми числами. Бор понял, что это номера орбит в порядке увеличения их расстояния от ядра. Например, серия бальмеровских линий излучается, когда электрон в атоме водорода прыгает на орбиту номер 2 с более высоких орбит (рис. 17.2).

Рис. 17.2. Электронные орбиты Бора в атоме водорода и переходы электронов с одной орбиты на другую. Возникающие при этих переходах спектральные линии группируются в серии, соответствующие наиболее внутренней орбите. Например, бальмеровские линии возникают при переходах со второго уровня на верхние (линии поглощения) или при переходах с верхних уровней на второй (линии излучения).

После возвращения в Данию Бор написал статью о своем открытии и послал ее Резерфорду. Резерфорд немного сомневался в теории Бора, но переслал статью в Philosophical Magazine для опубликования. Отклики на статью были самые разные, начиная с замечания лорда Рэлея: «Я не вижу в статье ничего полезного» до восторга, с каким принял статью Эйнштейн. Эйнштейн признался, что у него были такие же мысли, но не хватило смелости дать им ход.

В 1919 году Бор стал профессором теоретической физики в Копенгагене. Для продолжения его исследований был создан специальный институт, впоследствии один из ведущих центров по развитию атомной физики, место, где могли встречаться ученые из разных уголков мира, что было непросто после Первой мировой войны.

Модель Бора настолько хорошо описывает излучение атома, что постепенно ее стали считать реальной (врезка 17.1). Но потребовалось ее развитие. Арнольд Зоммерфельд (1868–1951) начал использовать модель атома с эллиптическими орбитами электронов. Он считал, что, наряду с круговой орбитой, электрон может иметь и эллиптическую орбиту того же диаметра. Позже от движения электронов по орбитам вообще отказались, и от первых моделей с орбитами осталась лишь идея об энергетических уровнях. Атом может перейти на уровень с большей энергией, то есть — возбудиться. После того как пройдет возбуждение, атом испускает фотон.