Читать «Эволюция Вселенной и происхождение жизни» онлайн - страница 129

Пекка Теерикор

Единство волн и частиц

Теория Максвелла рассматривает свет как электромагнитные колебания. Но при использовании этой теории для объяснения спектра излучения абсолютно черного тела возникли проблемы. Было известно, что излучение черного тела обладает наибольшей силой на определенной длине волны и ослабевает по обе стороны от этого максимума в спектре. Но классическая теория не могла объяснить уменьшение интенсивности на высоких частотах. Немецкий физик Макс Планк понял, как можно объяснить наблюдаемый спектр черного тела: нужно предположить, что атом может излучать энергию только порциями определенного размера. Связанная с излучением энергия похожа на частицы: излучиться может одна, две, три и т. д. «частицы», но доля «частицы» излучиться не может.

Минимальная порция энергии, по предположению Планка, пропорциональна частоте волны: чем выше частота, тем больше энергии в каждой порции. Коэффициент пропорциональности называют постоянной Планка. Таким образом,

Энергия = Постоянная Планка x частота.

Поскольку частота и длина волны обратно пропорциональны друг другу, порция энергии обратно пропорциональна длине волны. Постоянная Планка очень мала, поэтому в быту мы не замечаем отдельных порций света, как не замечаем, что на вид сплошное вещество состоит из крошечных атомов.

Макс Планк был родом из Киля, но большую часть своих исследований провел в Мюнхене, где и защитил диссертацию (рис. 17.1). До этого Планк слушал лекции Кирхгофа и Гельмгольца в Берлине. Довольно неожиданно его избрали преемником Кирхгофа в Берлине. Планк исследовал излучение черного тела, и в 1900 году это привело его к важнейшему открытию. Похоже, Планк не очень высоко оценивал значение своего открытия, что энергия может излучаться только определенными порциями, называемыми квантами. Он считал, что это свойство атомов, и думал, что нет причин, мешающих электромагнитной волне переносить любое количество энергии.

Рис. 17.1. (а) Макс Планк (1858–1947) и (б) Нильс Бор (1885–1962).

Следующий шаг сделал Эйнштейн, который показал, что квантование энергии в порции связано не только с колебаниями в атоме, но и с самим электромагнитным излучением. Доказательством существования квантов света (фотонов) стало объяснение, которое Эйнштейн дал фотоэлектрическому эффекту — испусканию металлом электронов под действием падающего на него света. Это явление в 1880-х годах неожиданно открыл Генрих Герц во время экспериментов с радиоволнами. Ультрафиолетовые фотоны с высокой энергией могут выбивать электроны из металла, даже если свет имеет очень малую интенсивность. Даже один высокоэнергичный квант высокочастотного излучения способен совершить работу по «выдергиванию» электрона из металла. Но отдельные низкоэнергетичные кванты красного или инфракрасного низкочастотного излучения (даже если таких квантов много при ярком освещении) не могут выбить электрон. Грубый аналог этого явления — бросок в лицо пригоршни песка или тяжелого камня; ясно, что последствия этих ударов будут разными.