Читать «Апология математики, или О математике как части духовной культуры» онлайн - страница 7
Владимир Андреевич Успенский
Теперь — пример из жизни треугольников. Речь пойдёт о триангуляции. Триангуляция — это сеть примыкающих друг к другу, наподобие паркетин, треугольников различной формы; при этом существенно, что примыкание происходит целыми сторонами, так что вершина одного треугольника не может лежать внутри стороны другого. Триангуляции сыграли важнейшую роль в определении расстояний на земной поверхности, а тем самым и в определении фигуры Земли.
Потребность в измерении больших, в сотни километров, расстояний — как по суше, так и по морю — появилась ещё в древние времена. Капитаны судов, как известно из детских книг, меряют расстояния числом выкуренных трубок. Близок к этому метод, применявшийся во II веке до н. э. знаменитым древнегреческим философом, математиком и астрономом Посидонием, учителем Цицерона: морские расстояния Посидоний измерял длительностью плавания (с учётом, разумеется, скорости судна). Но ещё раньше, в III веке до н. э., другой знаменитый древний грек, заведующий Александрийской библиотекой математик и астроном Эратосфен, измерял сухопутные расстояния по скорости и времени движения торговых караванов. Можно предполагать, что именно так Эратосфен измерил расстояние между Александрией и Сиеной, которая сейчас называется Асуаном (если смотреть по современной карте, получается примерно 850 км). Это расстояние было для него чрезвычайно важным. Дело в том, что Эратосфен считал эти два египетских города лежащими на одном и том же меридиане; хотя это в действительности не совсем так, но близко к истине. Найденное расстояние он принял за длину дуги меридиана. Соединив эту длину с наблюдением полуденных высот Солнца над горизонтом в Александрии и Сиене, он, далее, путём изящных геометрических рассуждений, вычислил длину всего меридиана, а тем самым и величину радиуса земного шара.
Ещё в XVI веке расстояние (примерно стокилометровое) между Парижем и Амьеном определялось при помощи счёта оборотов колеса экипажа. Очевидна приблизительность результатов подобных измерений. Но уже в следующем столетии голландский математик, оптик и астроном Снеллиус изобрёл излагаемый ниже метод триангуляции и с его помощью в течение 1615–1617 годов измерил дугу меридиана, имеющую угловой размер в один градус и одиннадцать с половиной минут.
Посмотрим, как триангуляция позволяет определять расстояния. Сперва триангулируется полоса земной поверхности, включающая в себя оба пункта, расстояние между которыми хотят найти. Затем выбирается один из треугольников триангуляции; будем называть его начальным. Далее выбирается одна из сторон начального треугольника. Она объявляется