Читать «Истина и красота. Всемирная история симметрии.» онлайн - страница 214

Иэн Стюарт

Теперь мы знаем, что все эти семейства представляют собой вариации на одну и ту же тему. Они состоят из всех n×n-матриц, удовлетворяющих некоторому конкретному алгебраическому условию — они «косо-эрмитовы». Единственное различие состоит в том, что для получения ортогональных алгебр Ли надо использовать матрицы из вещественных чисел, для получения унитарных алгебр Ли — матрицы из комплексных чисел, а для получения симплектических алгебр Ли — матрицы из кватернионов. Эти алгебры образуют бесконечные семейства, потому что матрицы могут иметь какой угодно размер. Чудесно видеть, что алгебры Ли, соответствующие естественным преобразованиям в гамильтоновом описании механики — первом великом открытии Гамильтона, — допускают естественное описание в терминах кватернионов — его последнего великого открытия.

Но теперь самое время задуматься, а что же происходит, если в качестве матричных элементов используются октонионы. К сожалению, из-за отсутствия ассоциативности не удается получить новое бесконечное семейство простых алгебр Ли. На самом деле лучше бы сказать «к счастью», поскольку мы ведь знаем, что такого семейства не существует. Но если играть с октонионами в правильные игры, да еще заручиться поддержкой закона малых чисел, можно получить самые настоящие алгебры Ли.

Первый намек на то, что так может случиться, появился в 1914 году, когда Эли Картан ответил на очевидный вопрос и получил удивительный ответ. Руководящий принцип в математике и физике состоит в том, что если имеется некоторый интересный объект, то первое, что про него надо спросить, — это какова его группа симметрии. Группа симметрии системы вещественных чисел тривиальна и состоит только из одного тождественного преобразования — преобразования «не делаем ничего». Группа симметрии системы комплексных чисел содержит тождественный элемент и одну зеркальную симметрию, которая преобразует i в −i. Группой симметрии кватернионов является SU(2), которая почти совпадаете группой вращений SO(3) в трехмерном вещественном пространстве.

Вопрос, который задал Картан, — это «Какова группа симметрии октонионов?». Если вы — некий Картан, то ответ на этот вопрос вам известен. Группой симметрии октонионов является наименьшая из исключительных простых групп Ли — та, которая известна под именем G2. 8-мерная система октонионов имеет 14-мерную группу симметрии. Исключительная нормированная алгебра с делением непосредственно связана с первой из исключительных групп Ли.

Чтобы двигаться дальше, нам надо подружиться с одной идеей, восходящей к эпохе Возрождения — но только не к математикам, а к художникам того времени.

В те дни математика и искусства были довольно близки друг к другу — не только в архитектуре, но и в живописи. Художники времен Возрождения открыли, как применить геометрию к перспективе. Они нашли геометрические правила для изображения на бумаге таким образом, чтобы объекты и пейзажи выглядели как трехмерные. При этом они изобрели новый и удивительно красивый вид геометрии.