Читать «Истина и красота. Всемирная история симметрии.» онлайн - страница 212

Иэн Стюарт

Почему? По сути, потому что процесс Кэли-Диксона постепенно разрушает законы алгебры. Всякий раз, как он применяется, получающаяся система ведет себя в чем-то не так хорошо, как предыдущая. Шаг за шагом, закон за законом — и изящные вещественные числа погружаются в анархию. Подробности этого таковы.

Наши четыре числовые системы имеют и другие общие свойства, помимо нормированности. Наиболее впечатляющее — из-за которого они и попадают в класс обобщений вещественных чисел — состоит в том, что это «алгебры с делением». Имеется много алгебраических систем, к которым применимы понятия сложения, вычитания и умножения. Но в наших четырех системах можно, кроме того, делить. Существование мультипликативной нормы делает их «нормированными алгебрами с делением». В течение некоторого времени Грейвс полагал, что его метод перехода от 4 к 8 можно будет повторить, что приведет к нормированным алгебрам с делением размерностей 16, 32, 64 — всех степеней двойки. Но он наткнулся на препятствие с седенионами и начал сомневаться, действительно ли существует 16-мерная нормированная алгебра с делением. Он был прав: нам теперь известно, что существуют только четыре нормированные алгебры с делением, и они имеют размерности 1, 2, 4 и 8. Нет формулы для 16 квадратов, подобной формуле Грейвса для восьми квадратов или формуле Эйлера для четырех квадратов.

Почему? На каждом шаге вдоль по цепочке из степеней двойки новая числовая система теряет некоторую часть структуры. Комплексные числа не упорядочены вдоль прямой. Кватернионы не подчиняются алгебраическому правилу ab = ba — закону коммутативности. Октонионы не подчиняются закону ассоциативности (ab)c = a(bc), хотя и удовлетворяют закону альтернативности (ab)a = a(ba). Седенионы не образуют алгебру с делением и не имеют мультипликативной нормы.

Все это носит намного более фундаментальный характер, чем просто факт «отказа» в процессе Кэли-Диксона. В 1898 году Гурвиц доказал, что единственные нормированные алгебры с делением — это четыре наших старых друга. В 1930 году Макс Цорн доказал, что те же четыре алгебры являются единственными альтернативными алгебрами с делением. Они поистине исключительны.

Происходящее — из разряда тех вещей, которые нравятся чистым математикам с их платоническими пристрастиями. Но единственными по-настоящему важными для остального человечества случаями являются, по-видимому, вещественные и комплексные числа, которые имеют широкие практические применения. Кватернионы проявили себя в ряде полезных, пусть даже эзотерических приложений, но октонионы не попадали в свет рампы прикладной науки. Они, казалось, являют собой некий тупик чистой математики, подобие претенциозной интеллектуальной чепухи, которой и следует ожидать от людей, витающих в облаках.

История математики показывает снова и снова, что опасно отбрасывать всякие яркие или красивые идеи лишь на том основании, что они вроде бы не приносят очевидной пользы. К сожалению, это не мешает людям пренебрегать такими идеями, часто именно потому, что они прекрасные или яркие. Чем более «практическими» люди себя полагают, тем в большей степени они склонны поливать презрением математические концепции, возникающие из абстрактных проблем и изобретенные «ради самих себя», а не из проблем реального мира. Чем изящнее концепция, тем больше презрения, как будто бы изящества самого по себе следует стыдиться.