Читать «Фокусы и игры» онлайн - страница 9
Яков Исидорович Перельман
Суть задачи в том, чтобы поменять местами чайник и молочник, передвигая предметы из одного квадрата в другой по определенным правилам, а именно:
1) предмет перемещать только в тот квадрат, который окажется свободным;
2) нельзя передвигать предметы по диагонали квадрата;
3) нельзя переносить один предмет поверх другого;
4) нельзя также помещать в квадрат более одного предмета, даже временно.
Эта задача имеет много решений, но интересно найти самое короткое, т. е. обменять местами чайник и молочник за наименьшее число ходов.
Рис. 2. Стол, накрытый к чаю
В поисках решения незаметно прошел вечер; я покидал станцию, так и не найдя кратчайшего решения.
Может быть, читатели найдут его? На всякий случай предупреждаю, что искомое наименьшее число ходов все же больше дюжины, хотя и меньше полутора дюжин.
Рис. 3. В гараже
3. Автомобильный гараж
На нашем чертеже изображен план автомобильного гаража с помещениями для двенадцати автомобилей. Но помещение так неудобно, так мало, что у заведующего гаражом постоянно возникают затруднения. Вот одно из них. Предположим, что восемь автомобилей стоят так, как показано на рис. 3. Автомобили 1, 2, 3 и 4 необходимо поменять местами с автомобилями 5, 6, 7 и 8.
Как это сделать за наименьшее число переездов?
Надо заметить, что два автомобиля двигаться одновременно не могут и что в каждом отсеке гаража помещается только один автомобиль.
4. Три дороги
Три брата – Петр, Павел и Яков – получили невдалеке от их домов три участка земли, расположенные рядом. Каждый устроил на своем участке огород. Как видно из рис. 4, дома Петра, Павла и Якова и отведенные братьям земельные участки расположены не совсем удобно.
Но братья не могли договориться об обмене. А так как кратчайшие пути к огородам пересекались, то между ними вскоре начались столкновения, перешедшие в ссоры. Желая прекратить распри, братья решили отыскать такие пути к своим участкам, чтобы не пересекать друг другу дороги.
Рис. 4. Три дома – три участка
После долгих поисков они нашли такие три пути и теперь ежедневно ходят на свои огороды, не встречаясь друг с другом.
Можете ли вы указать эти пути?
5. Муха на занавеске
На оконной занавеске с рисунком в клетку уселись 9 мух. Случайно они расположились так, что никакие две мухи не оказались в одном и том же ряду – ни прямом, ни косом (рис. 5).
Рис. 5. Мухи на занавеске
Спустя несколько минут три мухи сменили места и переползли в соседние, незанятые клетки; остальные 6 не двигались. Но забавно: хотя три мухи перешли на другие места, все 9 снова оказались размещенными так, что никакая пара не находилась в одном прямом или косом ряду.
Можете ли вы сказать, какие три мухи и куда пересели?
6. Дачники и коровы
Вокруг озера расположены четыре дачи, а почти прямо на берегу – четыре коровника (рис. 6).
Рис. 6. Дачники и коровы
Владельцы дач хотят соорудить сплошной забор так, чтобы озеро было закрыто от коров, но в то же время доступно для дачников, любящих купаться.
Исполнимо ли их желание? Если исполнимо, то как нужно построить забор, чтобы он имел наименьшую длину и, следовательно, обошелся возможно дешевле?