Читать «Фокусы и игры» онлайн - страница 8
Яков Исидорович Перельман
Теперь уже не трудно найти способ беспроигрышной игры. Он состоит в том, чтобы, имея
9. Если условие игры обратное и выигравшим считается обладатель нечетного числа, вы должны поступать при игре следующим образом: имея
10. Вы, вероятно, пытались составить шесть треугольников, располагая спички в одной плоскости. И, конечно, безуспешно, потому что так задачу решить невозможно. Но ведь такого ограничения в задаче нет: вы можете располагать треугольники и не в одной плоскости, т. е. размещать их в пространстве. И тогда она решается очень просто – нужно лишь построить из 6 спичек пирамиду с треугольным основанием и треугольными боками (рис. 8). У вас получится 4 равносторонних треугольника из 6 спичек.
Рис. 8. Четыре равносторонних треугольника из шести спичек (треугольники – грани пирамиды)
Головоломные размещения и занимательные перестановки
1. Белки и кролики
Перед вами восемь пронумерованных пней (рис. 1). На пнях 1 и 3 сидят кролики, на пнях 6 и 8 – белки. И белки, и кролики почему-то недовольны своими местами и хотят обменяться пнями: белки желают сидеть на местах кроликов, а кролики – на местах белок. Попасть на новое место они могут, прыгая с пня на пень по следующим правилам:
1) прыгать с пня на пень можно только по тем линиям, которые показаны на рисунке; каждый зверек может делать несколько прыжков кряду;
Рис. 1. На полянке
2) два зверька на одном пне поместиться не могут, поэтому прыгать можно только на свободный пень.
Имейте также в виду, что зверьки желают обменяться местами за наименьшее число прыжков. Впрочем, меньше чем 16 прыжками им не обойтись.
Как же они это сделают?
2. Чайный сервиз
Мне пришлось как-то целый вечер ждать поезд на маленькой станции. Не было ни книг, ни газет, ни собеседников, и я не знал, чем наполнить часы ожидания. К счастью, я вспомнил об одной занимательной задаче, которая незадолго до того попалась мне в иностранном журнале. Задача состояла в следующем.
Стол разграфлен на 6 квадратов, в каждом из которых, кроме одного, помещается какой-нибудь предмет. Я воспользовался чайной посудой и разместил по квадратам чашки, чайник и молочник, как показано на рис. 2.