Читать «Теория Большого взрыва: гид по сериалу по версии Kuraj-Bambey» онлайн - страница 125

Екатерина Диппер

Что же получается? Мы имеем световой океан, заполненный четко следующими друг за другом абсолютно одинаковыми волнами. Сами понимаете, что даже человек с полным отсутствием физического воображения, каким считает Леонарда Шелдон, способен придумать тысячу применений такому прибору, из которых кипячение жестянки с супом будет далеко не самым интересным.

Но все же мы еще не ответили на вопрос, что находится внутри у этой штуковины. Для ответа вспомним предыдущий параграф, а именно ту его часть, где говорится, что все сущее обязано иметь свою самую малую часть. Такой малой частью для света является фотон, причем процессы излучения и поглощения этих фотонов квантовыми объектами носят сильно отличающийся от классического характер. Главным тут является то, что любой объект, будь то молекула или атом, не может ни излучить, ни запросто поглотить фотон произвольной энергии. Испускаемая энергия обязана иметь одно из строго определенных значений. А в случае поглощения атом склонен «выбирать», какой фотон он согласен «принять», и он однозначно любит те фотоны, энергия которых близка к той, которую он сам излучает.

Поначалу это может показаться неудобным, но именно тут и находится ключ к тому, чтобы создать источник излучения с вышеописанными свойствами. Надо просто подойти к этому явлению с другого конца и спросить: «А что будет, если в веществе уже есть какое-то количество возбужденных, готовых излучиться фотонов?» Оказывается, что такие фотоны испускаются с той же легкостью, с которой на голову великих ученых падают созревшие яблоки, особенно в том случае, если мимо пролетает их собрат с таким же количеством энергии. Самое приятное следствие этого заключается в том, что «сорванный с ветки» фотон оказывается полностью идентичным пролетевшему. Это явление, получившее название индуцированного излучения, и лежит в основе действия лазера.

К сожалению, как это часто бывает, от понимания принципа до создания работающего лазера прошло больше пятидесяти лет, что, впрочем, еще не самый впечатляющий разрыв между идеей и ее воплощением в физике. Дело в том, что для создания лазера были нужны две вещи: первое — переполненная возбужденными фотонами, или, другими словами, накачанная среда, и второе — резонатор, который не дал бы фотонам выскочить из накачанного объема раньше, чем они сами в свою очередь заставят кого-то из своих соседей тоже излучить. Для накачки рабочего тела было предложено много различных методов, но наиболее простым оказался метод оптической накачки (автор которого, кстати, тоже не остался без Нобелевской премии). В этом случае объем, в котором находятся атомы, облучается источником света, длина волны которого близка к расстоянию между уровнями вещества будущего лазера. Как мы помним, такие фотоны атомам симпатичны, и они поглощают их, накачивая вещество, как рота солдат, проходя по мосту в ногу, раскачивает мост.

Если говорить начистоту, таким методом не удается получить сколь-нибудь существенного количества атомов в неравновесном состоянии, так как возбужденная таким методом среда немедленно излучает. Но если между основным и нагретым нами уровнем имеется еще один, сравнительно долго живущий, то атомы, скатываясь на него, оказываются в ловушке. Сверху напирают их высоковозбужденные соседи, а падать вниз на основное состояние им еще рановато. Именно эта схема, получившая название трехуровневой накачки, и была реализована в первом рубиновом лазере.