Читать «Занимательная математика» онлайн - страница 39
Георгий Гамов
— Признаться, я все еще не понимаю.
— О'кей. Попробуем разобраться во всем с числами. Предположим, что в каждом из бокалов первоначально содержалось по 3 унции жидкости и что мерный стаканчик вмещает 1 унцию жидкости. Вы берете треть джина, или 1 его унцию, и переливаете в бокал с тоником, в котором в результате оказывается 4 унции жидкости. Во втором бокале теперь содержится три четверти тоника и одна четверть джина. Вы тщательно перемешиваете содержимое второго бокала и отливаете из него в мерный стаканчик 1 унцию смеси. Эта смесь содержит три четверти тоника и одну четверть джина. После того как вы переливаете мерный стаканчик такой смеси в первый бокал, баланс по количеству жидкости восстанавливается, но теперь у вас в первом бокале 2 1/4 унции джина и 3/4 унции тоника. А оставшиеся в бокале с тоником 3/4 унции джина заменяют перелитые в бокал с джином 3/4 унции тоника. Понятно?
Если бы было так, как думали вы, и джина во втором бокале после двух переливаний оказалось больше, чем тоника в бокале с джином, то это означало бы, что общее количество джина увеличилось, а общее количество тоника — уменьшилось. Неплохой способ превращать воду в вино!
Баржа в шлюзе
— Вернемся к задачам, связанным с водной стихией, — вмешался в разговор еще один яхтсмен. — Вот одна неплохая задачка для вас. Я задавал ее в свое время нескольким физикам, и ни один из них не смог правильно решить ее. Баржа с грузом металлолома на борту вошла в шлюз. По какой-то неизвестной причине матросы на барже начали сбрасывать металлолом в воду и занимались этим до тех пор, пока полностью не опустошили трюмы баржи. Вопрос заключается в том, что произойдет с уровнем воды в шлюзе?
— Ничего, уровень воды в шлюзе не изменится, — сказал один из яхтсменов.
— Нет, уровень воды в шлюзе поднимется, — настаивал другой.
— Именно такие ответы я получал от физиков, — заметил первый яхтсмен. — Но в действительности ни тот, ни другой ответ не верен. Уровень воды в шлюзе понизится. Дело в том, что по закону Архимеда любое плавающее тело вытесняет объем воды, вес которого равен весу тела. Так как железо гораздо тяжелее воды, объем вытесняемой воды, когда железо находится на плаву, в трюме баржи, гораздо больше объема железа. Когда же железо оказывается в воде на дне шлюза, оно вытесняет лишь то количество воды, которое соответствует его объему. Следовательно, уровень воды в шлюзе, после того как железо выброшено за борт, должен понизиться.
— Мне не совсем ясно, — запротестовал один из слушателей.
— Давайте рассуждать иначе. Астрономы утверждают, что некоторые звезды, например белый карлик Сириус Б, состоят из вещества, которое в миллион раз плотнее воды. Кубический сантиметр такого вещества весил бы несколько тонн. Если столь тяжелый кубик поместить на баржу, то баржа осядет в воде очень глубоко и уровень воды в шлюзе поднимется. Если же кубический сантиметр звездного вещества покоится на дне, то он вытесняет всего лишь 1 кубический сантиметр воды, т. е. практически ничего, и уровень воды в шлюзе понижается. В случае с металлоломом получится то же самое, только различие в уровнях воды будет не столь заметно.