Читать «Концепции современного естествознания: Шпаргалка» онлайн - страница 5

Коллектив авторов

где a – ускорение тела; F – сила; m – масса тела.

Сила есть действие, производимое над телом, чтобы изменить его состояние покоя или равномерного и прямолинейного движения. Масса тела выступает как коэффициент пропорциональности между силой, действующей на тело, и ускорением (F = ma) и характеризует инертность тела, т. е. степень неподатливости изменению состояния движения.

Третий закон Ньютона: силы взаимодействия двух материальных точек равны по величине, противоположно направлены и действуют вдоль прямой, соединяющей эти материальные точки, т. е.

где F12 – сила, действующая на первое тело со стороны второго; F21 – сила, действующая на второе тело со стороны первого.

Выдающейся заслугой Ньютона было открытие закона всемирного тяготения: два точечных тела притягивают друг друга с силой, прямо пропорциональной произведению их масс, обратно пропорциональной квадрату расстояния между ними и направленной вдоль соединяющей их прямой, т. е.

где γ = 6,7 10-11 м3/(кг • с2) – гравитационная постоянная; m1 и m2 – массы тел; r – расстояние между телами.

7. ПРИНЦИПЫ ОТНОСИТЕЛЬНОСТИ ГАЛИЛЕЯ

Во всех инерциальных системах отсчета законы классической механики (законы Ньютона) имеют одинаковую форму; в этом сущность механического принципа относительности – принципа относительности Галилея. Он означает, что уравнения динамики при переходе от одной инерциальной системы отсчета к другой не изменяются, т. е. инвариантны по отношению к преобразованиям координат.

x′ = x vt, y′ = y, z′ =z, t′ = t,

где x, y, z и t; x′, y′, z′ и t′– координаты тела и время в неподвижной и подвижной системах отсчета соответственно; v – скорость подвижной системы отсчета.

Эти формулы называются преобразованиями Галилея.

Легко показать, что законы динамики Ньютона инвариантны относительно преобразований Галилея. Это объясняется тем, что силы и массы тел одинаковы во всех инерциальных системах отсчета и ускорения тел, которые определяются двойным дифференцированием координат по времени, также одинаковы

(a = d2x/dt2 = d2x'/dt2 = a').

Инвариантами, т. е. величинами, численное значение которых не изменяется при преобразовании координат по Галилею, являются длины и интервалы времени. Покажем это.

Пусть в подвижной системе координат находится неподвижный стержень, координаты концов которого (x´1, y, z´1) и (x´2, y´2, z´2). Это означает, что длина стержня в подвижной системе

Тогда относительно неподвижной системы отсчета стержень движется поступательно и все его точки имеют скорость v. Длиной движущегося стержня, по определению, называется расстояние между координатами его концов в некоторый момент времени. Таким образом, для измерения длины движущегося стержня необходимо одновременно, т. е. при одинаковых показаниях часов неподвижной системы отсчета, расположенных в соответствующих точках, отметить положение концов стержня. Пусть засечки положения концов движущегося стержня сделаны в неподвижной системе координат в момент времени t и характеризуются координатами (х1, у1, z1) и (х2, у2, z2). Тогда для длины стержня в неподвижной системе отсчета будем иметь